BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26615634)

  • 1. [Main Cellular Redox Couples].
    Bilan DS; Shokhina AG; Lukyanov SA; Belousov VV
    Bioorg Khim; 2015; 41(4):385-402. PubMed ID: 26615634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-sample preparation for simultaneous cellular redox and energy state determination.
    Lazzarino G; Amorini AM; Fazzina G; Vagnozzi R; Signoretti S; Donzelli S; Di Stasio E; Giardina B; Tavazzi B
    Anal Biochem; 2003 Nov; 322(1):51-9. PubMed ID: 14705780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage.
    Ceconi C; Bernocchi P; Boraso A; Cargnoni A; Pepi P; Curello S; Ferrari R
    Cardiovasc Res; 2000 Aug; 47(3):586-94. PubMed ID: 10963731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Responses to Reductive Stress.
    Xiao W; Loscalzo J
    Antioxid Redox Signal; 2020 Jun; 32(18):1330-1347. PubMed ID: 31218894
    [No Abstract]   [Full Text] [Related]  

  • 8. The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking.
    Hirrlinger J; Dringen R
    Brain Res Rev; 2010 May; 63(1-2):177-88. PubMed ID: 19883686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of GSH synthesis inhibition on temporal distribution of NAD+/NADH during vascular endothelial cells proliferation.
    Busu C; Atanasiu V; Caldito G; Aw TY
    J Med Life; 2014; 7(4):611-8. PubMed ID: 25713632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic signalling in defence and stress: the central roles of soluble redox couples.
    Noctor G
    Plant Cell Environ; 2006 Mar; 29(3):409-25. PubMed ID: 17080595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development.
    Queval G; Noctor G
    Anal Biochem; 2007 Apr; 363(1):58-69. PubMed ID: 17288982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentose phosphate shunt, pyridine nucleotides, glutathione, and insulin secretion of fetal islets.
    Ammon HP; Bumiller G; Düppenbecker H; Heinze E; Lutz S; Verspohl EJ
    Am J Physiol; 1983 Apr; 244(4):E354-60. PubMed ID: 6340522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver.
    Veech RL; Eggleston LV; Krebs HA
    Biochem J; 1969 Dec; 115(4):609-19. PubMed ID: 4391039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.
    Ghosh D; Levault KR; Brewer GJ
    Aging Cell; 2014 Aug; 13(4):631-40. PubMed ID: 24655393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations on Cellular Redox States upon Infection and Implications for Host Cell Homeostasis.
    Mesquita I; Vergnes B; Silvestre R
    Exp Suppl; 2018; 109():197-220. PubMed ID: 30535600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
    Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH
    Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of cellular thiol redox status with mitogen-induced calcium mobilization and cell cycle progression in human fibroblasts.
    Mallery SR; Laufman HB; Solt CW; Stephens RE
    J Cell Biochem; 1991 Jan; 45(1):82-92. PubMed ID: 1900843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.
    Ludewig G; Dogra S; Glatt H
    Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.