These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26615688)

  • 21. How accurate are TD-DFT excited-state geometries compared to DFT ground-state geometries?
    Wang J; Durbeej B
    J Comput Chem; 2020 Jul; 41(18):1718-1729. PubMed ID: 32323870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excited states of ladder-type π-conjugated dyes with a joint SOS-CIS(D) and PCM-TD-DFT approach.
    Chibani S; Laurent AD; Le Guennic B; Jacquemin D
    J Phys Chem A; 2015 May; 119(21):5417-25. PubMed ID: 25522826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calculations of n→π* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/GW Descriptions.
    Azarias C; Habert C; Budzák Š; Blase X; Duchemin I; Jacquemin D
    J Phys Chem A; 2017 Aug; 121(32):6122-6134. PubMed ID: 28738157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix.
    Woo SJ; Kim JJ
    J Phys Chem A; 2021 Feb; 125(5):1234-1242. PubMed ID: 33517658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBE0 and SAC-CI.
    Bousquet D; Fukuda R; Jacquemin D; Ciofini I; Adamo C; Ehara M
    J Chem Theory Comput; 2014 Sep; 10(9):3969-79. PubMed ID: 26588540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can TD-DFT calculations accurately describe the excited states behavior of stacked nucleobases? The cytosine dimer as a test case.
    Santoro F; Barone V; Improta R
    J Comput Chem; 2008 Apr; 29(6):957-64. PubMed ID: 17963224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Time Dependent and Time Independent Density Functional Theory to the First π to π* Transition in Cyanine Dyes.
    Zhekova H; Krykunov M; Autschbach J; Ziegler T
    J Chem Theory Comput; 2014 Aug; 10(8):3299-307. PubMed ID: 26588299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes.
    Latouche C; Skouteris D; Palazzetti F; Barone V
    J Chem Theory Comput; 2015 Jul; 11(7):3281-9. PubMed ID: 26575764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Communication: orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals.
    Sears JS; Koerzdoerfer T; Zhang CR; Brédas JL
    J Chem Phys; 2011 Oct; 135(15):151103. PubMed ID: 22029290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy of TD-DFT Geometries: A Fresh Look.
    Brémond E; Savarese M; Adamo C; Jacquemin D
    J Chem Theory Comput; 2018 Jul; 14(7):3715-3727. PubMed ID: 29883546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress in time-dependent density-functional theory.
    Casida ME; Huix-Rotllant M
    Annu Rev Phys Chem; 2012; 63():287-323. PubMed ID: 22242728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a TDDFT-Based Protocol with Local Hybrid Functionals for the Screening of Potential Singlet Fission Chromophores.
    Grotjahn R; Maier TM; Michl J; Kaupp M
    J Chem Theory Comput; 2017 Oct; 13(10):4984-4996. PubMed ID: 28862856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals.
    Körzdörfer T; Brédas JL
    Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of TD-DFT and LF-DFT for study of d - d transitions in first row transition metal hexaaqua complexes.
    Vlahović F; Perić M; Gruden-Pavlović M; Zlatar M
    J Chem Phys; 2015 Jun; 142(21):214111. PubMed ID: 26049483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.
    Xie RH; Bryant GW; Sun G; Nicklaus MC; Heringer D; Frauenheim T; Manaa MR; Smith VH; Araki Y; Ito O
    J Chem Phys; 2004 Mar; 120(11):5133-47. PubMed ID: 15267383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finding the optimal exchange-correlation functional to describe the excited state properties of push-pull organic dyes designed for thermally activated delayed fluorescence.
    Cardeynaels T; Paredis S; Deckers J; Brebels S; Vanderzande D; Maes W; Champagne B
    Phys Chem Chem Phys; 2020 Jul; 22(28):16387-16399. PubMed ID: 32657285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of TD-DFT and CC2 Methods for the Calculation of Resonance Raman Intensities: Application to o-Nitrophenol.
    Guthmuller J
    J Chem Theory Comput; 2011 Apr; 7(4):1082-9. PubMed ID: 26606356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: a comparison between wave-function theory and density functional theory.
    Réal F; Vallet V; Marian C; Wahlgren U
    J Chem Phys; 2007 Dec; 127(21):214302. PubMed ID: 18067352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals.
    Goerigk L; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2009 Jun; 11(22):4611-20. PubMed ID: 19475182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.