These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26615697)

  • 21. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QM/MM calculation of protein magnetic shielding tensors with generalized hybrid-orbital method: a GIAO approach.
    Akinaga Y; Jung J; Ten-no S
    Phys Chem Chem Phys; 2011 Aug; 13(32):14490-9. PubMed ID: 21761071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals.
    Aquino F; Govind N; Autschbach J
    J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals.
    Autschbach J
    J Chem Phys; 2008 Apr; 128(16):164112. PubMed ID: 18447426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory.
    Stoychev GL; Auer AA; Neese F
    J Chem Theory Comput; 2018 Sep; 14(9):4756-4771. PubMed ID: 30048136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory.
    Autschbach J; Patchkovskii S; Pritchard B
    J Chem Theory Comput; 2011 Jul; 7(7):2175-88. PubMed ID: 26606487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory.
    Maschio L; Kirtman B; Rérat M; Orlando R; Dovesi R
    J Chem Phys; 2013 Oct; 139(16):164101. PubMed ID: 24181998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear magnetic resonance predictions for graphenes: concentric finite models and extrapolation to large systems.
    Vähäkangas J; Ikäläinen S; Lantto P; Vaara J
    Phys Chem Chem Phys; 2013 Apr; 15(13):4634-41. PubMed ID: 23422931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level.
    Gauss J; Ruud K; Kállay M
    J Chem Phys; 2007 Aug; 127(7):074101. PubMed ID: 17718600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of spin-current densities using gauge-including atomic orbitals.
    Taubert S; Sundholm D; Jusélius J
    J Chem Phys; 2011 Feb; 134(5):054123. PubMed ID: 21303108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance.
    Patchkovskii S; Strong RT; Pickard CJ; Un S
    J Chem Phys; 2005 Jun; 122(21):214101. PubMed ID: 15974722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the use of effective core potentials in the calculation of magnetic properties, such as magnetizabilites and magnetic shieldings.
    van Wüllen C
    J Chem Phys; 2012 Mar; 136(11):114110. PubMed ID: 22443751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants.
    Harding ME; Lenhart M; Auer AA; Gauss J
    J Chem Phys; 2008 Jun; 128(24):244111. PubMed ID: 18601321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculation of electronic g-tensors using coupled cluster theory.
    Gauss J; Kállay M; Neese F
    J Phys Chem A; 2009 Oct; 113(43):11541-9. PubMed ID: 19848425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calculation of Verdet constants with time-dependent density functional theory: implementation and results for small molecules.
    Krykunov M; Banerjee A; Ziegler T; Autschbach J
    J Chem Phys; 2005 Feb; 122(7):074105. PubMed ID: 15743219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory.
    Krykunov M; Autschbach J
    J Chem Phys; 2006 Jul; 125(3):34102. PubMed ID: 16863339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS).
    Sinnecker S; Rajendran A; Klamt A; Diedenhofen M; Neese F
    J Phys Chem A; 2006 Feb; 110(6):2235-45. PubMed ID: 16466261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.