BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26615709)

  • 1. Evaluation of scale-up from analytical to preparative supercritical fluid chromatography.
    Enmark M; Åsberg D; Leek H; Öhlén K; Klarqvist M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2015 Dec; 1425():280-6. PubMed ID: 26615709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography.
    Åsberg D; Enmark M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2014 Dec; 1374():254-260. PubMed ID: 25499060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography.
    Noireau A; Lemasson E; Mauge F; Petit AM; Bertin S; Hennig P; Lesellier É; West C
    J Pharm Biomed Anal; 2019 Jun; 170():40-47. PubMed ID: 30904738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scaling rule in supercritical fluid chromatography. I. Theory for isocratic systems.
    Tarafder A; Hudalla C; Iraneta P; Fountain KJ
    J Chromatogr A; 2014 Oct; 1362():278-93. PubMed ID: 25200534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of preparative-supercritical fluid chromatography.
    Rajendran A
    J Chromatogr A; 2012 Aug; 1250():227-49. PubMed ID: 22704881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions.
    Forss E; Haupt D; Stålberg O; Enmark M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1499():165-173. PubMed ID: 28389095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.
    De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2016 Aug; 1459():129-135. PubMed ID: 27401813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling.
    De Pauw R; Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2014 Oct; 1365():212-8. PubMed ID: 25262033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling rule in SFC. II. A practical rule for isocratic systems.
    Tarafder A; Hill JF
    J Chromatogr A; 2017 Jan; 1482():65-75. PubMed ID: 28057333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemometric approach to elucidate the parameter impact in the hyphenation of evaporative light scattering detector to supercritical fluid chromatography.
    Lecoeur M; Simon N; Sautou V; Decaudin B; Vaccher C;
    J Chromatogr A; 2014 Mar; 1333():124-33. PubMed ID: 24529952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.
    Lesellier E; Mith D; Dubrulle I
    J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical evaluation of the advantages and limitations of constant pressure versus constant flow rate gradient elution separation in supercritical fluid chromatography.
    De Pauw R; Desmet G; Broeckhoven K
    J Chromatogr A; 2013 Oct; 1312():134-42. PubMed ID: 24041511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial.
    Nováková L; Perrenoud AG; Francois I; West C; Lesellier E; Guillarme D
    Anal Chim Acta; 2014 May; 824():18-35. PubMed ID: 24759745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of column back pressure on supercritical fluid chromatography separations of enantiomers using binary mobile phases on 10 chiral stationary phases.
    Wang C; Zhang Y
    J Chromatogr A; 2013 Mar; 1281():127-34. PubMed ID: 23394748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase.
    Leśko M; Poe DP; Kaczmarski K
    J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of non-traditional modifiers for analytical and preparative enantioseparations using supercritical fluid chromatography.
    Miller L
    J Chromatogr A; 2012 Sep; 1256():261-6. PubMed ID: 22901296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced fluidity liquid chromatography: A guide to scaling up from analytical to preparative separations.
    Bennett R; Biba M; Liu J; Haidar Ahmad IA; Hicks MB; Regalado EL
    J Chromatogr A; 2019 Jun; 1595():190-198. PubMed ID: 30803788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of robustness for supercritical fluid chromatography separation of peptides: Isocratic vs gradient mode.
    Enmark M; Glenne E; Leśko M; Langborg Weinmann A; Leek T; Kaczmarski K; Klarqvist M; Samuelsson J; Fornstedt T
    J Chromatogr A; 2018 Sep; 1568():177-187. PubMed ID: 30072233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide.
    Berger TA
    J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modeling of overloaded elution band profiles in supercritical fluid chromatography.
    Vajda P; Guiochon G
    J Chromatogr A; 2014 Mar; 1333():116-23. PubMed ID: 24529406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.