BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26615714)

  • 1. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics.
    Porter C; Herndon DN; Bhattarai N; Ogunbileje JO; Szczesny B; Szabo C; Toliver-Kinsky T; Sidossis LS
    Burns; 2016 Feb; 42(1):112-122. PubMed ID: 26615714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Skeletal Muscle Mitochondrial Dysfunction is Associated with Hypermetabolism in Severely Burned Children.
    Porter C; Herndon DN; Børsheim E; Bhattarai N; Chao T; Reidy PT; Rasmussen BB; Andersen CR; Suman OE; Sidossis LS
    J Burn Care Res; 2016; 37(1):53-63. PubMed ID: 26361327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults.
    Porter C; Herndon DN; Børsheim E; Chao T; Reidy PT; Borack MS; Rasmussen BB; Chondronikola M; Saraf MK; Sidossis LS
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(5):E462-7. PubMed ID: 25074988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal Muscle Mitochondrial Function is Determined by Burn Severity, Sex, and Sepsis, and is Associated With Glucose Metabolism and Functional Capacity in Burned Children.
    Rontoyanni VG; Malagaris I; Herndon DN; Rivas E; Capek KD; Delgadillo AD; Bhattarai N; Elizondo A; Voigt CD; Finnerty CC; Suman OE; Porter C
    Shock; 2018 Aug; 50(2):141-148. PubMed ID: 29206761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burn Trauma Acutely Increases the Respiratory Capacity and Function of Liver Mitochondria.
    Bohanon FJ; Nunez Lopez O; Herndon DN; Wang X; Bhattarai N; Ayadi AE; Prasai A; Jay JW; Rojas-Khalil Y; Toliver-Kinsky TE; Finnerty CC; Radhakrishnan RS; Porter C
    Shock; 2018 Apr; 49(4):466-473. PubMed ID: 28682939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury.
    Szczesny B; Brunyánszki A; Ahmad A; Oláh G; Porter C; Toliver-Kinsky T; Sidossis L; Herndon DN; Szabo C
    PLoS One; 2015; 10(12):e0143730. PubMed ID: 26630679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma.
    Tzika AA; Astrakas LG; Cao H; Mintzopoulos D; Zhang Q; Padfield K; Yu H; Mindrinos MN; Rahme LG; Tompkins RG
    Int J Mol Med; 2008 Jun; 21(6):825-32. PubMed ID: 18506378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe Burn Injury Induces Thermogenically Functional Mitochondria in Murine White Adipose Tissue.
    Porter C; Herndon DN; Bhattarai N; Ogunbileje JO; Szczesny B; Szabo C; Toliver-Kinsky T; Sidossis LS
    Shock; 2015 Sep; 44(3):258-64. PubMed ID: 26009824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
    Astrakas LG; Goljer I; Yasuhara S; Padfield KE; Zhang Q; Gopalan S; Mindrinos MN; Dai G; Yu YM; Martyn JA; Tompkins RG; Rahme LG; Tzika AA
    FASEB J; 2005 Sep; 19(11):1431-40. PubMed ID: 16126910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of burn injury on apoptosis and expression of apoptosis-related genes/proteins in skeletal muscles of rats.
    Duan H; Chai J; Sheng Z; Yao Y; Yin H; Liang L; Shen C; Lin J
    Apoptosis; 2009 Jan; 14(1):52-65. PubMed ID: 19009350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a high-throughput method for real-time assessment of cellular metabolism in intact long skeletal muscle fibre bundles.
    Li R; Steyn FJ; Stout MB; Lee K; Cully TR; Calderón JC; Ngo ST
    J Physiol; 2016 Dec; 594(24):7197-7213. PubMed ID: 27619319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased oxidative phosphorylation in lymphocytes does not atone for decreased cell numbers after burn injury.
    Chao T; Gomez BI; Heard TC; Dubick MA; Burmeister DM
    Innate Immun; 2020 Jul; 26(5):403-412. PubMed ID: 31906760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy.
    Righi V; Constantinou C; Mintzopoulos D; Khan N; Mupparaju SP; Rahme LG; Swartz HM; Szeto HH; Tompkins RG; Tzika AA
    FASEB J; 2013 Jun; 27(6):2521-30. PubMed ID: 23482635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling protein 3 expression and intramyocellular lipid accumulation by NMR following local burn trauma.
    Zhang Q; Cao H; Astrakas LG; Mintzopoulos D; Mindrinos MN; Schulz J; Tompkins RG; Rahme LG; Tzika AA
    Int J Mol Med; 2006 Dec; 18(6):1223-9. PubMed ID: 17089030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women.
    Rose S; Carvalho E; Diaz EC; Cotter M; Bennuri SC; Azhar G; Frye RE; Adams SH; Børsheim E
    Am J Physiol Endocrinol Metab; 2019 Sep; 317(3):E503-E512. PubMed ID: 31211617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sexual dimorphism in human skeletal muscle mitochondrial bioenergetics in response to type 1 diabetes.
    Monaco CMF; Bellissimo CA; Hughes MC; Ramos SV; Laham R; Perry CGR; Hawke TJ
    Am J Physiol Endocrinol Metab; 2020 Jan; 318(1):E44-E51. PubMed ID: 31794260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal injury initiates pervasive fibrogenesis in skeletal muscle.
    Brightwell CR; Hanson ME; El Ayadi A; Prasai A; Wang Y; Finnerty CC; Fry CS
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C277-C287. PubMed ID: 32432932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS
    Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.