These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26615811)

  • 1. s-Block amidoboranes: syntheses, structures, reactivity and applications.
    Stennett TE; Harder S
    Chem Soc Rev; 2016 Feb; 45(4):1112-28. PubMed ID: 26615811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2008 Nov; 130(44):14834-9. PubMed ID: 18847204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications and reactivity trends of homoleptic p-block metal amido reagents.
    Melen RL
    Dalton Trans; 2013 Dec; 42(47):16449-65. PubMed ID: 24165993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amidoboranes of rubidium and caesium: the last missing members of the alkali metal amidoborane family.
    Owarzany R; Jaroń T; Leszczyński PJ; Fijalkowski KJ; Grochala W
    Dalton Trans; 2017 Nov; 46(46):16315-16320. PubMed ID: 29143054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen release from dialkylamine-boranes promoted by Mg and Ca complexes: a DFT analysis of the reaction mechanism.
    Butera V; Russo N; Sicilia E
    Chemistry; 2014 May; 20(20):5967-76. PubMed ID: 24700384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.
    Bellham P; Anker MD; Hill MS; Kociok-Köhn G; Mahon MF
    Dalton Trans; 2016 Sep; 45(35):13969-78. PubMed ID: 27529536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The promise and challenge of iron-catalyzed cross coupling.
    Sherry BD; Fürstner A
    Acc Chem Res; 2008 Nov; 41(11):1500-11. PubMed ID: 18588321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. M(BH3NH2BH2NH2BH3)--the missing link in the mechanism of the thermal decomposition of light alkali metal amidoboranes.
    Fijalkowski KJ; Jaroń T; Leszczyński PJ; Magos-Palasyuk E; Palasyuk T; Cyrański MK; Grochala W
    Phys Chem Chem Phys; 2014 Nov; 16(42):23340-6. PubMed ID: 25259596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.
    O'Hair RA; Rijs NJ
    Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline earths as main group reagents in molecular catalysis.
    Hill MS; Liptrot DJ; Weetman C
    Chem Soc Rev; 2016 Feb; 45(4):972-88. PubMed ID: 26797470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry of soluble β-diketiminatoalkaline-earth metal complexes with M-X bonds (M=Mg, Ca, Sr; X=OH, Halides, H).
    Sarish SP; Nembenna S; Nagendran S; Roesky HW
    Acc Chem Res; 2011 Mar; 44(3):157-70. PubMed ID: 21247094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.
    Kim DY; Lee HM; Seo J; Shin SK; Kim KS
    Phys Chem Chem Phys; 2010; 12(20):5446-53. PubMed ID: 20372731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles.
    Shevlin SA; Kerkeni B; Guo ZX
    Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-release mechanisms in lithium amidoboranes.
    Kim DY; Singh NJ; Lee HM; Kim KS
    Chemistry; 2009; 15(22):5598-604. PubMed ID: 19370741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric reactivity of dialkylamine boranes with alkaline earth silylamides.
    Hill MS; Hodgson M; Liptrot DJ; Mahon MF
    Dalton Trans; 2011 Aug; 40(30):7783-90. PubMed ID: 21475757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydrocoupling routes to element-element bonds catalysed by main group compounds.
    Melen RL
    Chem Soc Rev; 2016 Feb; 45(4):775-88. PubMed ID: 26255747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and stabilization-advances in organoalkaline earth metal chemistry.
    Buchanan WD; Allis DG; Ruhlandt-Senge K
    Chem Commun (Camb); 2010 Jul; 46(25):4449-65. PubMed ID: 20445937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.