These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26615942)
1. A New Empirical Correction to the AM1 Method for Macromolecular Complexes. Foster ME; Sohlberg K J Chem Theory Comput; 2010 Jul; 6(7):2153-66. PubMed ID: 26615942 [TBL] [Abstract][Full Text] [Related]
2. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
3. Empirically corrected DFT and semi-empirical methods for non-bonding interactions. Foster ME; Sohlberg K Phys Chem Chem Phys; 2010 Jan; 12(2):307-22. PubMed ID: 20023806 [TBL] [Abstract][Full Text] [Related]
4. Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. Řezáč J; Fanfrlík J; Salahub D; Hobza P J Chem Theory Comput; 2009 Jul; 5(7):1749-60. PubMed ID: 26610000 [TBL] [Abstract][Full Text] [Related]
5. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules. McNamara JP; Hillier IH Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099 [TBL] [Abstract][Full Text] [Related]
6. Correction to DFT interaction energies by an empirical dispersion term valid for a range of intermolecular distances. Deligkaris C; Rodriguez JH Phys Chem Chem Phys; 2012 Mar; 14(10):3414-24. PubMed ID: 22297728 [TBL] [Abstract][Full Text] [Related]
7. Density Functional and Semiempirical Molecular Orbital Methods Including Dispersion Corrections for the Accurate Description of Noncovalent Interactions Involving Sulfur-Containing Molecules. Morgado CA; McNamara JP; Hillier IH; Burton NA; Vincent MA J Chem Theory Comput; 2007 Sep; 3(5):1656-64. PubMed ID: 26627611 [TBL] [Abstract][Full Text] [Related]
8. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. Řezáč J; Hobza P J Chem Theory Comput; 2012 Jan; 8(1):141-51. PubMed ID: 26592877 [TBL] [Abstract][Full Text] [Related]
9. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods. Antony J; Grimme S; Liakos DG; Neese F J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894 [TBL] [Abstract][Full Text] [Related]
10. Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs? Villar R; Gil MJ; García JI; Martínez-Merino V J Comput Chem; 2005 Oct; 26(13):1347-58. PubMed ID: 16021597 [TBL] [Abstract][Full Text] [Related]
11. Empirical Correction to Molecular Interaction Energies in Density Functional Theory (DFT) for Methane Hydrate Simulation. Du QS; Liu PJ; Deng J J Chem Theory Comput; 2007 Sep; 3(5):1665-72. PubMed ID: 26627612 [TBL] [Abstract][Full Text] [Related]
12. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
13. A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. Korth M; Pitoňák M; Řezáč J; Hobza P J Chem Theory Comput; 2010 Jan; 6(1):344-52. PubMed ID: 26614342 [TBL] [Abstract][Full Text] [Related]
14. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes. Corminboeuf C Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016 [TBL] [Abstract][Full Text] [Related]
15. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286 [TBL] [Abstract][Full Text] [Related]
16. Van der Waals-corrected density functional theory: benchmarking for hydrogen-nanotube and nanotube-nanotube interactions. Du AJ; Smith SC Nanotechnology; 2005 Oct; 16(10):2118-23. PubMed ID: 20817982 [TBL] [Abstract][Full Text] [Related]
17. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
18. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. Dabkowska I; Jurecka P; Hobza P J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739 [TBL] [Abstract][Full Text] [Related]
19. Determination of structure and properties of molecular crystals from first principles. Szalewicz K Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310 [TBL] [Abstract][Full Text] [Related]
20. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]