BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26616024)

  • 1. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome.
    Sakai H; Naito K; Ogiso-Tanaka E; Takahashi Y; Iseki K; Muto C; Satou K; Teruya K; Shiroma A; Shimoji M; Hirano T; Itoh T; Kaga A; Tomooka N
    Sci Rep; 2015 Nov; 5():16780. PubMed ID: 26616024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage.
    Chakraborty M; Baldwin-Brown JG; Long AD; Emerson JJ
    Nucleic Acids Res; 2016 Nov; 44(19):e147. PubMed ID: 27458204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity.
    Verde I; Jenkins J; Dondini L; Micali S; Pagliarani G; Vendramin E; Paris R; Aramini V; Gazza L; Rossini L; Bassi D; Troggio M; Shu S; Grimwood J; Tartarini S; Dettori MT; Schmutz J
    BMC Genomics; 2017 Mar; 18(1):225. PubMed ID: 28284188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.
    Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues.
    Colella JP; Tigano A; MacManes MD
    Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data.
    Jayakumar V; Ishii H; Seki M; Kumita W; Inoue T; Hase S; Sato K; Okano H; Sasaki E; Sakakibara Y
    BMC Genomics; 2020 Apr; 21(Suppl 3):243. PubMed ID: 32241258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Low-Cost Assembly of the
    Solares EA; Chakraborty M; Miller DE; Kalsow S; Hall K; Perera AG; Emerson JJ; Hawley RS
    G3 (Bethesda); 2018 Oct; 8(10):3143-3154. PubMed ID: 30018084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved annotation with de novo transcriptome assembly in four social amoeba species.
    Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C
    BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies.
    Blanc-Mathieu R; Verhelst B; Derelle E; Rombauts S; Bouget FY; Carré I; Château A; Eyre-Walker A; Grimsley N; Moreau H; Piégu B; Rivals E; Schackwitz W; Van de Peer Y; Piganeau G
    BMC Genomics; 2014 Dec; 15(1):1103. PubMed ID: 25494611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Sequencing.
    Yoshinaga Y; Daum C; He G; O'Malley R
    Methods Mol Biol; 2018; 1775():37-52. PubMed ID: 29876807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Chromosome-Scale Assembly of the
    Sim SB; Geib SM
    G3 (Bethesda); 2017 Jun; 7(6):1927-1940. PubMed ID: 28450369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes.
    Miyamoto M; Motooka D; Gotoh K; Imai T; Yoshitake K; Goto N; Iida T; Yasunaga T; Horii T; Arakawa K; Kasahara M; Nakamura S
    BMC Genomics; 2014 Aug; 15(1):699. PubMed ID: 25142801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Contiguous Genome Assemblies of 15
    Miller DE; Staber C; Zeitlinger J; Hawley RS
    G3 (Bethesda); 2018 Oct; 8(10):3131-3141. PubMed ID: 30087105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference-guided de novo assembly approach improves genome reconstruction for related species.
    Lischer HEL; Shimizu KK
    BMC Bioinformatics; 2017 Nov; 18(1):474. PubMed ID: 29126390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.
    Berlin K; Koren S; Chin CS; Drake JP; Landolin JM; Phillippy AM
    Nat Biotechnol; 2015 Jun; 33(6):623-30. PubMed ID: 26006009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.
    Deng F; Chen SY; Wu ZL; Hu Y; Jia X; Lai SJ
    J Comput Biol; 2017 Oct; 24(10):1060-1064. PubMed ID: 28355123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage.
    Putnam NH; O'Connell BL; Stites JC; Rice BJ; Blanchette M; Calef R; Troll CJ; Fields A; Hartley PD; Sugnet CW; Haussler D; Rokhsar DS; Green RE
    Genome Res; 2016 Mar; 26(3):342-50. PubMed ID: 26848124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach.
    Hu H; Yuan Y; Bayer PE; Fernandez CT; Scheben A; Golicz AA; Edwards D
    Methods Mol Biol; 2020; 2107():35-47. PubMed ID: 31893442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.