BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26616024)

  • 21. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads.
    Du H; Liang C
    Nat Commun; 2019 Nov; 10(1):5360. PubMed ID: 31767853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved genome reference for the African cichlid, Metriaclima zebra.
    Conte MA; Kocher TD
    BMC Genomics; 2015 Sep; 16(1):724. PubMed ID: 26394688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GFinisher: a new strategy to refine and finish bacterial genome assemblies.
    Guizelini D; Raittz RT; Cruz LM; Souza EM; Steffens MB; Pedrosa FO
    Sci Rep; 2016 Oct; 6():34963. PubMed ID: 27721396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.
    Zhou S; Goldstein S; Place M; Bechner M; Patino D; Potamousis K; Ravindran P; Pape L; Rincon G; Hernandez-Ortiz J; Medrano JF; Schwartz DC
    BMC Genomics; 2015 Aug; 16(1):644. PubMed ID: 26314885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid sequencing and map finding (HySeMaFi): optional strategies for extensively deciphering gene splicing and expression in organisms without reference genome.
    Ning G; Cheng X; Luo P; Liang F; Wang Z; Yu G; Li X; Wang D; Bao M
    Sci Rep; 2017 Mar; 7():43793. PubMed ID: 28272530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequencing smart: De novo sequencing and assembly approaches for a non-model mammal.
    Etherington GJ; Heavens D; Baker D; Lister A; McNelly R; Garcia G; Clavijo B; Macaulay I; Haerty W; Di Palma F
    Gigascience; 2020 May; 9(5):. PubMed ID: 32396200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny.
    Scaglione D; Reyes-Chin-Wo S; Acquadro A; Froenicke L; Portis E; Beitel C; Tirone M; Mauro R; Lo Monaco A; Mauromicale G; Faccioli P; Cattivelli L; Rieseberg L; Michelmore R; Lanteri S
    Sci Rep; 2016 Jan; 6():19427. PubMed ID: 26786968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The eukaryotic genome, its reads, and the unfinished assembly.
    Muñoz JF; Gallo JE; Misas E; McEwen JG; Clay OK
    FEBS Lett; 2013 Jul; 587(14):2090-3. PubMed ID: 23727201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes.
    Johnson LK; Alexander H; Brown CT
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30544207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Population Sequencing (POPSEQ) for Ordering and Imputing Genotyping-by-Sequencing Markers in Hexaploid Wheat.
    Edae EA; Bowden RL; Poland J
    G3 (Bethesda); 2015 Nov; 5(12):2547-53. PubMed ID: 26530417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novo&Stitch: accurate reconciliation of genome assemblies via optical maps.
    Pan W; Wanamaker SI; Ah-Fong AMV; Judelson HS; Lonardi S
    Bioinformatics; 2018 Jul; 34(13):i43-i51. PubMed ID: 29949964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TAG Sequence Identification of Genomic Regions Using TAGdb.
    Ruperao P
    Methods Mol Biol; 2016; 1374():233-40. PubMed ID: 26519409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hybrid approach for de novo human genome sequence assembly and phasing.
    Mostovoy Y; Levy-Sakin M; Lam J; Lam ET; Hastie AR; Marks P; Lee J; Chu C; Lin C; Džakula Ž; Cao H; Schlebusch SA; Giorda K; Schnall-Levin M; Wall JD; Kwok PY
    Nat Methods; 2016 Jul; 13(7):587-90. PubMed ID: 27159086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From sequence mapping to genome assemblies.
    Otto TD
    Methods Mol Biol; 2015; 1201():19-50. PubMed ID: 25388106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PacBio But Not Illumina Technology Can Achieve Fast, Accurate and Complete Closure of the High GC, Complex
    Teng JLL; Yeung ML; Chan E; Jia L; Lin CH; Huang Y; Tse H; Wong SSY; Sham PC; Lau SKP; Woo PCY
    Front Microbiol; 2017; 8():1448. PubMed ID: 28824579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi.
    Sakai H; Naito K; Takahashi Y; Sato T; Yamamoto T; Muto I; Itoh T; Tomooka N
    Plant Cell Physiol; 2016 Jan; 57(1):e2. PubMed ID: 26644460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current state-of-art of sequencing technologies for plant genomics research.
    Thudi M; Li Y; Jackson SA; May GD; Varshney RK
    Brief Funct Genomics; 2012 Jan; 11(1):3-11. PubMed ID: 22345601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From Short Reads to Chromosome-Scale Genome Assemblies.
    Fletcher K; Michelmore R
    Methods Mol Biol; 2018; 1848():151-197. PubMed ID: 30182236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity.
    Edger PP; VanBuren R; Colle M; Poorten TJ; Wai CM; Niederhuth CE; Alger EI; Ou S; Acharya CB; Wang J; Callow P; McKain MR; Shi J; Collier C; Xiong Z; Mower JP; Slovin JP; Hytönen T; Jiang N; Childs KL; Knapp SJ
    Gigascience; 2018 Feb; 7(2):1-7. PubMed ID: 29253147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.