BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26616024)

  • 41. Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei.
    Montoliu-Nerin M; Sánchez-García M; Bergin C; Grabherr M; Ellis B; Kutschera VE; Kierczak M; Johannesson H; Rosling A
    Sci Rep; 2020 Jan; 10(1):1303. PubMed ID: 31992756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical Nano-mapping and Analysis of Plant Genomes.
    Luo MC; Deal KR; Murray A; Zhu T; Hastie AR; Stedman W; Sadowski H; Saghbini M
    Methods Mol Biol; 2016; 1429():103-17. PubMed ID: 27511170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication.
    Yang K; Tian Z; Chen C; Luo L; Zhao B; Wang Z; Yu L; Li Y; Sun Y; Li W; Chen Y; Li Y; Zhang Y; Ai D; Zhao J; Shang C; Ma Y; Wu B; Wang M; Gao L; Sun D; Zhang P; Guo F; Wang W; Li Y; Wang J; Varshney RK; Wang J; Ling HQ; Wan P
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13213-8. PubMed ID: 26460024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole-genome sequencing for comparative genomics and de novo genome assembly.
    Benjak A; Sala C; Hartkoorn RC
    Methods Mol Biol; 2015; 1285():1-16. PubMed ID: 25779307
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-read sequence assembly: a technical evaluation in barley.
    Mascher M; Wicker T; Jenkins J; Plott C; Lux T; Koh CS; Ens J; Gundlach H; Boston LB; Tulpová Z; Holden S; Hernández-Pinzón I; Scholz U; Mayer KFX; Spannagl M; Pozniak CJ; Sharpe AG; Šimková H; Moscou MJ; Grimwood J; Schmutz J; Stein N
    Plant Cell; 2021 Jul; 33(6):1888-1906. PubMed ID: 33710295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A high-quality cucumber genome assembly enhances computational comparative genomics.
    Osipowski P; Pawełkowicz M; Wojcieszek M; Skarzyńska A; Przybecki Z; Pląder W
    Mol Genet Genomics; 2020 Jan; 295(1):177-193. PubMed ID: 31620884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic variation and the de novo assembly of human genomes.
    Chaisson MJ; Wilson RK; Eichler EE
    Nat Rev Genet; 2015 Nov; 16(11):627-40. PubMed ID: 26442640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequencing and Assembling Genomes and Chromosomes of Cereal Crops.
    Helguera M
    Methods Mol Biol; 2020; 2072():27-37. PubMed ID: 31541436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity.
    Adey A; Kitzman JO; Burton JN; Daza R; Kumar A; Christiansen L; Ronaghi M; Amini S; Gunderson KL; Steemers FJ; Shendure J
    Genome Res; 2014 Dec; 24(12):2041-9. PubMed ID: 25327137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Capture of complete ciliate chromosomes in single sequencing reads reveals widespread chromosome isoforms.
    Lindblad KA; Pathmanathan JS; Moreira S; Bracht JR; Sebra RP; Hutton ER; Landweber LF
    BMC Genomics; 2019 Dec; 20(1):1037. PubMed ID: 31888453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving eukaryotic genome annotation using single molecule mRNA sequencing.
    Magrini V; Gao X; Rosa BA; McGrath S; Zhang X; Hallsworth-Pepin K; Martin J; Hawdon J; Wilson RK; Mitreva M
    BMC Genomics; 2018 Mar; 19(1):172. PubMed ID: 29495964
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AGOUTI: improving genome assembly and annotation using transcriptome data.
    Zhang SV; Zhuo L; Hahn MW
    Gigascience; 2016 Jul; 5(1):31. PubMed ID: 27435057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How complete are "complete" genome assemblies?-An avian perspective.
    Peona V; Weissensteiner MH; Suh A
    Mol Ecol Resour; 2018 Nov; 18(6):1188-1195. PubMed ID: 30035372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De novo assembly of the complete organelle genome sequences of azuki bean (Vigna angularis) using next-generation sequencers.
    Naito K; Kaga A; Tomooka N; Kawase M
    Breed Sci; 2013 Jun; 63(2):176-82. PubMed ID: 23853512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative evaluation of genome assembly reconciliation tools.
    Alhakami H; Mirebrahim H; Lonardi S
    Genome Biol; 2017 May; 18(1):93. PubMed ID: 28521789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Do it yourself guide to genome assembly.
    Wajid B; Serpedin E
    Brief Funct Genomics; 2016 Jan; 15(1):1-9. PubMed ID: 25392234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica).
    Formenti G; Chiara M; Poveda L; Francoijs KJ; Bonisoli-Alquati A; Canova L; Gianfranceschi L; Horner DS; Saino N
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30496513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach.
    Wang A; Wang Z; Li Z; Li LM
    Bioinformatics; 2018 Jun; 34(12):2019-2028. PubMed ID: 29346504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SRAssembler: Selective Recursive local Assembly of homologous genomic regions.
    McCarthy TW; Chou HC; Brendel VP
    BMC Bioinformatics; 2019 Jul; 20(1):371. PubMed ID: 31266441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes.
    Bratcher HB; Corton C; Jolley KA; Parkhill J; Maiden MC
    BMC Genomics; 2014 Dec; 15(1):1138. PubMed ID: 25523208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.