BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26616052)

  • 1. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.
    Chen C; Yin L; Song X; Yang H; Ren X; Gong X; Wang F; Yang L
    Biochem Biophys Res Commun; 2016 Jan; 469(1):132-137. PubMed ID: 26616052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes.
    Trickey WR; Vail TP; Guilak F
    J Orthop Res; 2004 Jan; 22(1):131-9. PubMed ID: 14656671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate stiffness together with soluble factors affects chondrocyte mechanoresponses.
    Chen C; Xie J; Deng L; Yang L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16106-16. PubMed ID: 25162787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis.
    Haudenschild DR; Chen J; Pang N; Steklov N; Grogan SP; Lotz MK; D'Lima DD
    J Orthop Res; 2011 Jan; 29(1):20-5. PubMed ID: 20602472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading.
    Miyata S; Tateishi T; Ushida T
    J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis.
    Blain EJ; Gilbert SJ; Hayes AJ; Duance VC
    Matrix Biol; 2006 Sep; 25(7):398-408. PubMed ID: 16876394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields.
    Knight MM; Bomzon Z; Kimmel E; Sharma AM; Lee DA; Bader DL
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):180-91. PubMed ID: 16520962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes.
    Chen C; Xie J; Rajappa R; Deng L; Fredberg J; Yang L
    Acta Biochim Biophys Sin (Shanghai); 2015 Feb; 47(2):121-9. PubMed ID: 25520178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of applied compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
    Lima EG; Bian L; Mauck RL; Byers BA; Tuan RS; Ateshian GA; Hung CT
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():779-82. PubMed ID: 17946858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics of single chondrocytes under direct shear.
    Ofek G; Dowling EP; Raphael RM; McGarry JP; Athanasiou KA
    Biomech Model Mechanobiol; 2010 Apr; 9(2):153-62. PubMed ID: 19644718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the disruption of three cytoskeleton components on chondrocyte metabolism in rabbit knee cartilage.
    Duan W; Wei L; Cao X; Guo H; Wang L; Hao Y; Wei X
    Chin Med J (Engl); 2014; 127(21):3764-70. PubMed ID: 25382333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture.
    Durrant LA; Archer CW; Benjamin M; Ralphs JR
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):343-53. PubMed ID: 10386772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression.
    Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B
    Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of collagen hydrolysate on chondrocyte-seeded agarose constructs.
    Elder SH; Borazjani A
    Biomed Mater Eng; 2009; 19(6):409-14. PubMed ID: 20231793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes.
    Chahine NO; Blanchette C; Thomas CB; Lu J; Haudenschild D; Loots GG
    PLoS One; 2013; 8(4):e61651. PubMed ID: 23613892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture.
    Kaupp JA; Waldman SD
    Proc Inst Mech Eng H; 2008 Jul; 222(5):695-703. PubMed ID: 18756688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.