BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 26616055)

  • 21. Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain.
    Chern M; Canlas PE; Ronald PC
    Mol Plant; 2008 May; 1(3):552-9. PubMed ID: 19825560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.
    Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z
    BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals.
    Hossain MM; Sultana F; Kubota M; Koyama H; Hyakumachi M
    Plant Cell Physiol; 2007 Dec; 48(12):1724-36. PubMed ID: 17956859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis.
    Ahn IP; Kim S; Lee YH; Suh SC
    Plant Physiol; 2007 Feb; 143(2):838-48. PubMed ID: 17158583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis.
    Liu PP; Yang Y; Pichersky E; Klessig DF
    Mol Plant Microbe Interact; 2010 Jan; 23(1):82-90. PubMed ID: 19958141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel signaling pathway controlling induced systemic resistance in Arabidopsis.
    Pieterse CM; van Wees SC; van Pelt JA; Knoester M; Laan R; Gerrits H; Weisbeek PJ; van Loon LC
    Plant Cell; 1998 Sep; 10(9):1571-80. PubMed ID: 9724702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens.
    Shah J; Kachroo P; Nandi A; Klessig DF
    Plant J; 2001 Mar; 25(5):563-74. PubMed ID: 11309146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3.
    Sultana F; Hossain MM; Kubota M; Hyakumachi M
    Plant Biol (Stuttg); 2009 Jan; 11(1):97-104. PubMed ID: 19121119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis.
    Choi J; Huh SU; Kojima M; Sakakibara H; Paek KH; Hwang I
    Dev Cell; 2010 Aug; 19(2):284-95. PubMed ID: 20708590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae.
    Cui J; Jander G; Racki LR; Kim PD; Pierce NE; Ausubel FM
    Plant Physiol; 2002 Jun; 129(2):551-64. PubMed ID: 12068100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.
    Mammarella ND; Cheng Z; Fu ZQ; Daudi A; Bolwell GP; Dong X; Ausubel FM
    Phytochemistry; 2015 Apr; 112():110-21. PubMed ID: 25096754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase.
    Lee J; Nam J; Park HC; Na G; Miura K; Jin JB; Yoo CY; Baek D; Kim DH; Jeong JC; Kim D; Lee SY; Salt DE; Mengiste T; Gong Q; Ma S; Bohnert HJ; Kwak SS; Bressan RA; Hasegawa PM; Yun DJ
    Plant J; 2007 Jan; 49(1):79-90. PubMed ID: 17163880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inositol-requiring enzyme 1 (IRE1) plays for AvrRpt2-triggered immunity and RIN4 cleavage in Arabidopsis under endoplasmic reticulum (ER) stress.
    Chakraborty R; Uddin S; Macoy DM; Park SO; Van Anh DT; Ryu GR; Kim YH; Lee JY; Cha JY; Kim WY; Lee SY; Kim MG
    Plant Physiol Biochem; 2020 Nov; 156():105-114. PubMed ID: 32927152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling.
    Luo X; Xu N; Huang J; Gao F; Zou H; Boudsocq M; Coaker G; Liu J
    Plant Physiol; 2017 Aug; 174(4):2501-2514. PubMed ID: 28696275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant chemical genetics reveals colistin sulphate as a SA and NPR1-independent PR1 inducer functioning via a p38-like kinase pathway.
    Halder V; Suliman MNS; Kaschani F; Kaiser M
    Sci Rep; 2019 Aug; 9(1):11196. PubMed ID: 31371749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis "defense, no death" mutants.
    Genger RK; Jurkowski GI; McDowell JM; Lu H; Jung HW; Greenberg JT; Bent AF
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1285-96. PubMed ID: 18785824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring Pseudomonas syringae pv. tomato biofilm-like aggregate formation in susceptible and PTI-responding Arabidopsis thaliana.
    Xiao WN; Nunn GM; Fufeng AB; Belu N; Brookman RK; Halim A; Krysmanski EC; Cameron RK
    Mol Plant Pathol; 2024 Jan; 25(1):e13403. PubMed ID: 37988240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity.
    Zhu X; Robe E; Jomat L; Aldon D; Mazars C; Galaud JP
    Plant Cell Physiol; 2017 Feb; 58(2):307-319. PubMed ID: 27837097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana.
    Jia Z; Zou B; Wang X; Qiu J; Ma H; Gou Z; Song S; Dong H
    Biochem Biophys Res Commun; 2010 May; 396(2):522-7. PubMed ID: 20434432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance.
    Nandi A; Welti R; Shah J
    Plant Cell; 2004 Feb; 16(2):465-77. PubMed ID: 14729910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.