These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26616157)

  • 1. Impact of moisture and magnesium stearate functionality on manufacturability of wet granulated metformin tablets.
    Kestur U; Desai D; Sharif S; Wong B; Guo H; Tang D; Chan S
    Pharm Dev Technol; 2017 Sep; 22(6):715-723. PubMed ID: 26616157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionality of magnesium stearate derived from bovine and vegetable sources: dry granulated tablets.
    Hamad ML; Gupta A; Shah RB; Lyon RC; Sayeed VA; Khan MA
    J Pharm Sci; 2008 Dec; 97(12):5328-40. PubMed ID: 18351597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary investigations of banana (Musa paradisiaca) starch mucilage as binder in metformin tablet formulation.
    Eraga SO; Arhewoh MI; Agboola JO; Iwuagwu MA
    Pak J Pharm Sci; 2018 Nov; 31(6):2435-2442. PubMed ID: 30473515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.
    Qu L; Zhou QT; Gengenbach T; Denman JA; Stewart PJ; Hapgood KP; Gamlen M; Morton DA
    Drug Dev Ind Pharm; 2015 May; 41(5):825-37. PubMed ID: 24738790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of multivariate methods to evaluate the functionality of bovine- and vegetable-derived magnesium stearate.
    Haware RV; Shivagari R; Johnson PR; Staton S; Stagner WC; Gupta MR
    J Pharm Sci; 2014 May; 103(5):1466-77. PubMed ID: 24596131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excipient-process interactions and their impact on tablet compaction and film coating.
    Pandey P; Bindra DS; Gour S; Trinh J; Buckley D; Badawy S
    J Pharm Sci; 2014 Nov; 103(11):3666-3674. PubMed ID: 25223603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetable-derived magnesium stearate functionality evaluation by DM(3) approach.
    Haware RV; Dave VS; Kakarala B; Delaney S; Staton S; Munson E; Gupta MR; Stagner WC
    Eur J Pharm Sci; 2016 Jun; 89():115-24. PubMed ID: 27108117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental investigation of the effect of the amount of lubricant on tablet properties.
    Perrault M; Bertrand F; Chaouki J
    Drug Dev Ind Pharm; 2011 Feb; 37(2):234-42. PubMed ID: 20704461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in the lubrication efficiency of bovine and vegetable-derived magnesium stearate during tabletting.
    Gupta A; Hamad ML; Tawakkul M; Sayeed VA; Khan MA
    AAPS PharmSciTech; 2009; 10(2):500-4. PubMed ID: 19390976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.
    Narang AS; Breckenridge L; Guo H; Wang J; Wolf AA; Desai D; Varia S; Badawy S
    J Pharm Sci; 2017 Jan; 106(1):200-207. PubMed ID: 27686683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate.
    Lau M; Young PM; Traini D
    AAPS PharmSciTech; 2017 Aug; 18(6):2248-2259. PubMed ID: 28070849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.
    Vercruysse J; Peeters E; Fonteyne M; Cappuyns P; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2015 Jan; 89():239-47. PubMed ID: 25528462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-milled API-lactose systems for inhalation therapy: impact of magnesium stearate on physico-chemical stability and aerosolization performance.
    Lau M; Young PM; Traini D
    Drug Dev Ind Pharm; 2017 Jun; 43(6):980-988. PubMed ID: 28122460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Magnesium Stearate Mono- and Dihydrate Dispersibilities on Physical Properties of Tablets.
    Yamamoto K; Tamura T; Yoshihashi Y; Terada K; Yonemochi E
    Chem Pharm Bull (Tokyo); 2017; 65(11):1028-1034. PubMed ID: 29093289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of intergranular versus intragranular cornstarch on tablet friability and in vitro dissolution.
    Chowhan ZT; Yang IC
    J Pharm Sci; 1983 Sep; 72(9):983-8. PubMed ID: 6631709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Punch geometry and formulation considerations in reducing tablet friability and their effect on in vitro dissolution.
    Chowhan ZT; Amaro AA; Ong JT
    J Pharm Sci; 1992 Mar; 81(3):290-4. PubMed ID: 1640370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous twin screw granulation: influence of process variables on granule and tablet quality.
    Vercruysse J; Córdoba Díaz D; Peeters E; Fonteyne M; Delaet U; Van Assche I; De Beer T; Remon JP; Vervaet C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):205-11. PubMed ID: 22687571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders.
    Arndt OR; Kleinebudde P
    AAPS PharmSciTech; 2018 Jul; 19(5):2068-2076. PubMed ID: 29687194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step Coprocessing of Cohesive Powder via Mechanical Dry Coating for Direct Tablet Compression.
    Qu L; Stewart PJ; Hapgood KP; Lakio S; Morton DAV; Zhou QT
    J Pharm Sci; 2017 Jan; 106(1):159-167. PubMed ID: 27665128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules.
    Mehta S; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2012 Jan; 422(1-2):310-7. PubMed ID: 22101283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.