These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26616311)

  • 1. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.
    Aoi S; Funato T
    Neurosci Res; 2016 Mar; 104():88-95. PubMed ID: 26616311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.
    Aoi S; Kondo T; Hayashi N; Yanagihara D; Aoki S; Yamaura H; Ogihara N; Funato T; Tomita N; Senda K; Tsuchiya K
    Biol Cybern; 2013 Apr; 107(2):201-16. PubMed ID: 23430278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis.
    Aoi S; Ohashi T; Bamba R; Fujiki S; Tamura D; Funato T; Senda K; Ivanenko Y; Tsuchiya K
    Sci Rep; 2019 Jan; 9(1):369. PubMed ID: 30674970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Phase Resetting to Adaptive Rhythm Control in Human Walking Based on the Phase Response Curves of a Neuromusculoskeletal Model.
    Tamura D; Aoi S; Funato T; Fujiki S; Senda K; Tsuchiya K
    Front Neurosci; 2020; 14():17. PubMed ID: 32116492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement.
    Ting LH; Chvatal SA; Safavynia SA; McKay JL
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1003-14. PubMed ID: 23027631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of stretch reflexes to locomotor control: a modeling study.
    Yakovenko S; Gritsenko V; Prochazka A
    Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting.
    Fujiki S; Aoi S; Funato T; Sato Y; Tsuchiya K; Yanagihara D
    Sci Rep; 2018 Nov; 8(1):17341. PubMed ID: 30478405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of robotic guidance on the coordination of locomotion.
    Moreno JC; Barroso F; Farina D; Gizzi L; Santos C; Molinari M; Pons JL
    J Neuroeng Rehabil; 2013 Jul; 10():79. PubMed ID: 23870328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of experimental muscle pain on the acquisition and retention of locomotor adaptation: different motor strategies for a similar performance.
    Bouffard J; Salomoni SE; Mercier C; Tucker K; Roy JS; van den Hoorn W; Hodges PW; Bouyer LJ
    J Neurophysiol; 2018 May; 119(5):1647-1657. PubMed ID: 29364067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle Coordination and Locomotion in Humans.
    Sylos-Labini F; Zago M; Guertin PA; Lacquaniti F; Ivanenko YP
    Curr Pharm Des; 2017; 23(12):1821-1833. PubMed ID: 28128057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults.
    MacLellan MJ
    Exp Brain Res; 2017 Jul; 235(7):2011-2026. PubMed ID: 28343307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does the brain solve muscle redundancy? Filling the gap between optimization and muscle synergy hypotheses.
    Hirashima M; Oya T
    Neurosci Res; 2016 Mar; 104():80-7. PubMed ID: 26724372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor control programs and walking.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Neuroscientist; 2006 Aug; 12(4):339-48. PubMed ID: 16840710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition of bipedal locomotion in a neuromusculoskeletal model with unilateral transtibial amputation.
    Ichimura D; Hobara H; Hisano G; Maruyama T; Tada M
    Front Bioeng Biotechnol; 2023; 11():1130353. PubMed ID: 36937747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator.
    Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K
    Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.