These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26616356)
1. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Balasubramanian S; Rajendra Y; Baldi L; Hacker DL; Wurm FM Biotechnol Bioeng; 2016 Jun; 113(6):1234-43. PubMed ID: 26616356 [TBL] [Abstract][Full Text] [Related]
2. Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. Balasubramanian S; Matasci M; Kadlecova Z; Baldi L; Hacker DL; Wurm FM J Biotechnol; 2015 Apr; 200():61-9. PubMed ID: 25758242 [TBL] [Abstract][Full Text] [Related]
3. Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools. Rajendra Y; Balasubramanian S; Peery RB; Swartling JR; McCracken NA; Norris DL; Frye CC; Barnard GC Biotechnol Prog; 2017 Mar; 33(2):534-540. PubMed ID: 28188692 [TBL] [Abstract][Full Text] [Related]
4. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Matasci M; Baldi L; Hacker DL; Wurm FM Biotechnol Bioeng; 2011 Sep; 108(9):2141-50. PubMed ID: 21495018 [TBL] [Abstract][Full Text] [Related]
5. Recombinant CHO Cell Pool Generation Using piggyBac Transposon System. Balasubramanian S Methods Mol Biol; 2018; 1850():69-78. PubMed ID: 30242681 [TBL] [Abstract][Full Text] [Related]
6. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952 [TBL] [Abstract][Full Text] [Related]
7. Recombinant CHO Cell Pool Generation Using PiggyBac Transposon System. Balasubramanian S Methods Mol Biol; 2024; 2810():137-146. PubMed ID: 38926277 [TBL] [Abstract][Full Text] [Related]
8. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Poulain A; Perret S; Malenfant F; Mullick A; Massie B; Durocher Y J Biotechnol; 2017 Aug; 255():16-27. PubMed ID: 28625678 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Park JH; Jin JH; Ji IJ; An HJ; Kim JW; Lee GM Biotechnol Bioeng; 2017 Oct; 114(10):2267-2278. PubMed ID: 28627725 [TBL] [Abstract][Full Text] [Related]
10. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Balasubramanian S; Wurm FM; Hacker DL Biotechnol Prog; 2016 Sep; 32(5):1308-1317. PubMed ID: 27302570 [TBL] [Abstract][Full Text] [Related]
11. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
12. Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Oberbek A; Matasci M; Hacker DL; Wurm FM Biotechnol Bioeng; 2011 Mar; 108(3):600-10. PubMed ID: 20967750 [TBL] [Abstract][Full Text] [Related]
13. Disruption of the gene C12orf35 leads to increased productivities in recombinant CHO cell lines. Ritter A; Rauschert T; Oertli M; Piehlmaier D; Mantas P; Kuntzelmann G; Lageyre N; Brannetti B; Voedisch B; Geisse S; Jostock T; Laux H Biotechnol Bioeng; 2016 Nov; 113(11):2433-42. PubMed ID: 27183150 [TBL] [Abstract][Full Text] [Related]
14. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Wu SC; Meir YJ; Coates CJ; Handler AM; Pelczar P; Moisyadi S; Kaminski JM Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15008-13. PubMed ID: 17005721 [TBL] [Abstract][Full Text] [Related]
15. Efficient production of recombinant proteins in suspension CHO cells culture using the Tol2 transposon system coupled with cycloheximide resistance selection. Yamaguchi K; Ogawa R; Tsukahara M; Kawakami K Sci Rep; 2023 May; 13(1):7628. PubMed ID: 37165015 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
17. ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese hamster ovary cells. Pieper LA; Strotbek M; Wenger T; Olayioye MA; Hausser A Biotechnol Bioeng; 2017 Jun; 114(6):1310-1318. PubMed ID: 28165157 [TBL] [Abstract][Full Text] [Related]
18. Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system. Rajendra Y; Peery RB; Barnard GC Biotechnol Prog; 2016 Sep; 32(5):1301-1307. PubMed ID: 27254818 [TBL] [Abstract][Full Text] [Related]
19. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230 [TBL] [Abstract][Full Text] [Related]
20. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering. Stiefel F; Fischer S; Sczyrba A; Otte K; Hesse F J Biotechnol; 2016 May; 225():31-43. PubMed ID: 27002234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]