These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26616449)

  • 21. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.
    Buono P; Duval A; Averous L; Habibi Y
    ChemSusChem; 2017 Mar; 10(5):984-992. PubMed ID: 28042912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review.
    Grigore ME; Grigorescu RM; Iancu L; Ion RM; Zaharia C; Andrei ER
    J Biomater Sci Polym Ed; 2019; 30(9):695-712. PubMed ID: 31012805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids.
    Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG
    Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization.
    Raza ZA; Riaz S; Banat IM
    Biotechnol Prog; 2018 Jan; 34(1):29-41. PubMed ID: 28960792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemically Intractable No More: In Vivo Incorporation of "Click"-Ready Fatty Acids into Poly-[(
    Pinto A; Ciesla JH; Palucci A; Sutliff BP; Nomura CT
    ACS Macro Lett; 2016 Feb; 5(2):215-219. PubMed ID: 35614681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water soluble polyhydroxyalkanoates: future materials for therapeutic applications.
    Li Z; Loh XJ
    Chem Soc Rev; 2015 May; 44(10):2865-79. PubMed ID: 25788317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clickable Nucleic Acids: Sequence-Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiol-X Reactions.
    Xi W; Pattanayak S; Wang C; Fairbanks B; Gong T; Wagner J; Kloxin CJ; Bowman CN
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14462-7. PubMed ID: 26458149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable Polyhydroxyalkanoates by Stereoselective Copolymerization of Racemic Diolides: Stereocontrol and Polyolefin-Like Properties.
    Tang X; Westlie AH; Caporaso L; Cavallo L; Falivene L; Chen EY
    Angew Chem Int Ed Engl; 2020 May; 59(20):7881-7890. PubMed ID: 31991036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis and Characteristics of Aromatic Polyhydroxyalkanoates.
    Ishii-Hyakutake M; Mizuno S; Tsuge T
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers.
    Bejagam KK; Iverson CN; Marrone BL; Pilania G
    Phys Chem Chem Phys; 2020 Aug; 22(32):17880-17889. PubMed ID: 32776023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system.
    Beigi Burujeny S; Atai M; Yeganeh H
    Dent Mater; 2015 Mar; 31(3):244-61. PubMed ID: 25605414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates.
    Kim DY; Kim HW; Chung MG; Rhee YH
    J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions.
    Matsumoto K; Taguchi S
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8011-21. PubMed ID: 23955470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.
    Tortajada M; da Silva LF; Prieto MA
    Int Microbiol; 2013 Mar; 16(1):1-15. PubMed ID: 24151777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications - Review.
    Butt FI; Muhammad N; Hamid A; Moniruzzaman M; Sharif F
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1294-1305. PubMed ID: 30189278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications.
    Luo Z; Wu YL; Li Z; Loh XJ
    Biotechnol J; 2019 Dec; 14(12):e1900283. PubMed ID: 31469496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.