BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 26616556)

  • 1. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis.
    Kang YJ; Ha YR; Lee SJ
    Anal Chem; 2016 Mar; 88(5):2912-22. PubMed ID: 26845250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties.
    Kang YJ
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum.
    Guo Q; Duffy SP; Matthews K; Deng X; Santoso AT; Islamzada E; Ma H
    Lab Chip; 2016 Feb; 16(4):645-54. PubMed ID: 26768227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on-off blood flows supplied from a disposable air-compressed pump.
    Kang YJ
    Analyst; 2019 Jun; 144(11):3556-3566. PubMed ID: 31050348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings.
    Kang YJ
    Physiol Meas; 2020 Mar; 41(2):025009. PubMed ID: 32000147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of erythrocyte deformability and blood viscoelasticity using micropillars and co-flowing streams under pulsatile blood flows.
    Kang YJ
    Biomicrofluidics; 2017 Jan; 11(1):014102. PubMed ID: 28798838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic cell-phoresis enabling high-throughput analysis of red blood cell deformability and biophysical screening of antimalarial drugs.
    Santoso AT; Deng X; Lee JH; Matthews K; Duffy SP; Islamzada E; McFaul SM; Myrand-Lapierre ME; Ma H
    Lab Chip; 2015 Dec; 15(23):4451-60. PubMed ID: 26477590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Investigation of Air Compliance Effect on Measurement of Mechanical Properties of Blood Sample Flowing in Microfluidic Channels.
    Kang YJ
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.
    Lipowsky HH; Cram LE; Justice W; Eppihimer MJ
    Microvasc Res; 1993 Jul; 46(1):43-64. PubMed ID: 8412852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions.
    Handayani S; Chiu DT; Tjitra E; Kuo JS; Lampah D; Kenangalem E; Renia L; Snounou G; Price RN; Anstey NM; Russell B
    J Infect Dis; 2009 Feb; 199(3):445-50. PubMed ID: 19090777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple Assessment of Red Blood Cell Deformability Using Blood Pressure in Capillary Channels for Effective Detection of Subpopulations in Red Blood Cells.
    Kang YJ; Serhrouchni S; Makhro A; Bogdanova A; Lee SS
    ACS Omega; 2022 Nov; 7(43):38576-38588. PubMed ID: 36340168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow.
    Wang T; Xing Z
    Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.