These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26616577)

  • 61. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity.
    Wang W; Lu YC; Huang H; Wang AJ; Chen JR; Feng JJ
    Biosens Bioelectron; 2015 Feb; 64():517-22. PubMed ID: 25310482
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fluorescence photo-bleaching of urine and its applicability in oral cancer diagnosis.
    Dutta SB; Krishna H; Gupta S; Majumder SK
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():18-24. PubMed ID: 31394298
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2012 Sep; 19(5):1070-8. PubMed ID: 22365027
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids.
    Kumar A; Chaudhary V
    Nanotechnology; 2009 Mar; 20(9):095703. PubMed ID: 19417499
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In situ activation of CdS electrochemiluminescence film and its application in H₂S detection.
    Zhang YY; Zhou H; Wu P; Zhang HR; Xu JJ; Chen HY
    Anal Chem; 2014 Sep; 86(17):8657-64. PubMed ID: 25096242
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics.
    Datta A; Priyam A; Bhattacharyya SN; Mukherjea KK; Saha A
    J Colloid Interface Sci; 2008 Jun; 322(1):128-35. PubMed ID: 18359487
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation.
    Xu M; Xu S; Yang Z; Shu M; He G; Huang D; Zhang L; Li L; Cui D; Zhang Y
    Nanoscale; 2015 Oct; 7(38):15915-23. PubMed ID: 26364977
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis.
    Wang Y; Li Y; Feng L
    J Phys Chem Lett; 2020 Dec; 11(24):10439-10445. PubMed ID: 33269935
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles.
    Wang C; Sun L; Yun H; Li J; Lai Y; Lin C
    Nanotechnology; 2009 Jul; 20(29):295601. PubMed ID: 19567967
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity.
    Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y
    Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Determination of Norfloxacin by its enhancement effect on the fluorescence intensity of functionalized CdS nanoparticles].
    Cao FQ; Li D; Yan ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2222-6. PubMed ID: 19839343
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tumor-Targeted Fluorescence Imaging and Mechanisms of Tumor Cell-Derived Carbon Nanodots.
    Huo T; Li W; Liang D; Huang R
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057086
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications.
    Krasley AT; Li E; Galeana JM; Bulumulla C; Beyene AG; Demirer GS
    Chem Rev; 2024 Mar; 124(6):3085-3185. PubMed ID: 38478064
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Facile and Green Synthesis of Novel Fluorescent Carbon Quantum Dots and Their Silver Heterostructure: An
    Mishra S; das K; Chatterjee S; Sahoo P; Kundu S; Pal M; Bhaumik A; Ghosh CK
    ACS Omega; 2023 Feb; 8(5):4566-4577. PubMed ID: 36777585
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluorescence sensing by carbon nanoparticles.
    Santonocito R; Intravaia M; Caruso IM; Pappalardo A; Trusso Sfrazzetto G; Tuccitto N
    Nanoscale Adv; 2022 Apr; 4(8):1926-1948. PubMed ID: 36133414
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Zn-assisted modification of the chemical structure of N-doped carbon dots and their enhanced quantum yield and photostability.
    Yun S; Kang ES; Choi JS
    Nanoscale Adv; 2022 Apr; 4(8):2029-2035. PubMed ID: 36133412
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomolecule-derived quantum dots for sustainable optoelectronics.
    Bhandari S; Mondal D; Nataraj SK; Balakrishna RG
    Nanoscale Adv; 2019 Mar; 1(3):913-936. PubMed ID: 36133200
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon Nanodots from an In Silico Perspective.
    Mocci F; de Villiers Engelbrecht L; Olla C; Cappai A; Casula MF; Melis C; Stagi L; Laaksonen A; Carbonaro CM
    Chem Rev; 2022 Aug; 122(16):13709-13799. PubMed ID: 35948072
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications.
    Pricilla RB; Skoda D; Urbanek P; Urbanek M; Suly P; Domincova Bergerova E; Kuritka I
    RSC Adv; 2022 May; 12(25):16277-16290. PubMed ID: 35733696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.