BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26616577)

  • 61. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@C-dot nanoparticles.
    Guo Z; Zhang Z; Zhang W; Zhou L; Li H; Wang H; Andreazza-Vignolle C; Andreazza P; Zhao D; Wu Y; Wang Q; Zhang T; Jiang K
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20700-8. PubMed ID: 25408428
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity.
    Wang W; Lu YC; Huang H; Wang AJ; Chen JR; Feng JJ
    Biosens Bioelectron; 2015 Feb; 64():517-22. PubMed ID: 25310482
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluorescence photo-bleaching of urine and its applicability in oral cancer diagnosis.
    Dutta SB; Krishna H; Gupta S; Majumder SK
    Photodiagnosis Photodyn Ther; 2019 Dec; 28():18-24. PubMed ID: 31394298
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2012 Sep; 19(5):1070-8. PubMed ID: 22365027
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids.
    Kumar A; Chaudhary V
    Nanotechnology; 2009 Mar; 20(9):095703. PubMed ID: 19417499
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ activation of CdS electrochemiluminescence film and its application in H₂S detection.
    Zhang YY; Zhou H; Wu P; Zhang HR; Xu JJ; Chen HY
    Anal Chem; 2014 Sep; 86(17):8657-64. PubMed ID: 25096242
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics.
    Datta A; Priyam A; Bhattacharyya SN; Mukherjea KK; Saha A
    J Colloid Interface Sci; 2008 Jun; 322(1):128-35. PubMed ID: 18359487
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation.
    Xu M; Xu S; Yang Z; Shu M; He G; Huang D; Zhang L; Li L; Cui D; Zhang Y
    Nanoscale; 2015 Oct; 7(38):15915-23. PubMed ID: 26364977
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis.
    Wang Y; Li Y; Feng L
    J Phys Chem Lett; 2020 Dec; 11(24):10439-10445. PubMed ID: 33269935
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles.
    Wang C; Sun L; Yun H; Li J; Lai Y; Lin C
    Nanotechnology; 2009 Jul; 20(29):295601. PubMed ID: 19567967
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity.
    Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y
    Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Determination of Norfloxacin by its enhancement effect on the fluorescence intensity of functionalized CdS nanoparticles].
    Cao FQ; Li D; Yan ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2222-6. PubMed ID: 19839343
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tumor-Targeted Fluorescence Imaging and Mechanisms of Tumor Cell-Derived Carbon Nanodots.
    Huo T; Li W; Liang D; Huang R
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057086
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CdS nanobubbles and Cd-DMS nanosheets: solvothermal synthesis and formation mechanism.
    Feng M; Zhan H
    J Nanosci Nanotechnol; 2013 Feb; 13(2):924-8. PubMed ID: 23646543
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications.
    Krasley AT; Li E; Galeana JM; Bulumulla C; Beyene AG; Demirer GS
    Chem Rev; 2024 Mar; 124(6):3085-3185. PubMed ID: 38478064
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Facile and Green Synthesis of Novel Fluorescent Carbon Quantum Dots and Their Silver Heterostructure: An
    Mishra S; das K; Chatterjee S; Sahoo P; Kundu S; Pal M; Bhaumik A; Ghosh CK
    ACS Omega; 2023 Feb; 8(5):4566-4577. PubMed ID: 36777585
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fluorescence sensing by carbon nanoparticles.
    Santonocito R; Intravaia M; Caruso IM; Pappalardo A; Trusso Sfrazzetto G; Tuccitto N
    Nanoscale Adv; 2022 Apr; 4(8):1926-1948. PubMed ID: 36133414
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Zn-assisted modification of the chemical structure of N-doped carbon dots and their enhanced quantum yield and photostability.
    Yun S; Kang ES; Choi JS
    Nanoscale Adv; 2022 Apr; 4(8):2029-2035. PubMed ID: 36133412
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biomolecule-derived quantum dots for sustainable optoelectronics.
    Bhandari S; Mondal D; Nataraj SK; Balakrishna RG
    Nanoscale Adv; 2019 Mar; 1(3):913-936. PubMed ID: 36133200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.