These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26616621)

  • 1. Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases.
    Send R; Sundholm D; Johansson MP; Pawłowski F
    J Chem Theory Comput; 2009 Sep; 5(9):2401-14. PubMed ID: 26616621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stairway to the conical intersection: a computational study of the retinal isomerization.
    Send R; Sundholm D
    J Phys Chem A; 2007 Sep; 111(36):8766-73. PubMed ID: 17713894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Perspectives on an Old Issue: A Comparative MS-CASPT2 and OM2-MRCI Study of Polyenes and Protonated Schiff Bases.
    Dokukina I; Marian CM; Weingart O
    Photochem Photobiol; 2017 Nov; 93(6):1345-1355. PubMed ID: 28833170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study.
    Aquino AJ; Barbatti M; Lischka H
    Chemphyschem; 2006 Oct; 7(10):2089-96. PubMed ID: 16941558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global investigation of excited state surfaces within time-dependent density-functional response theory.
    Wanko M; Garavelli M; Bernardi F; Niehaus TA; Frauenheim T; Elstner M
    J Chem Phys; 2004 Jan; 120(4):1674-92. PubMed ID: 15268299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the beta-ionone ring in the photochemical reaction of rhodopsin.
    Send R; Sundholm D
    J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.
    Tachikawa H; Iyama T
    J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases.
    Kraack JP; Buckup T; Motzkus M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control Mechanisms of Photoisomerization in Protonated Schiff Bases.
    Vuković L; Burmeister CF; Král P; Groenhof G
    J Phys Chem Lett; 2013 Mar; 4(6):1005-11. PubMed ID: 26291368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of protein environment on photoexcitation properties of retinal.
    Kaila VR; Send R; Sundholm D
    J Phys Chem B; 2012 Feb; 116(7):2249-58. PubMed ID: 22166007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of singlet ground and low-lying electronic excited states of phosphaethyne and isophosphaethyne.
    Ingels JB; Turney JM; Richardson NA; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2006 Sep; 125(10):104306. PubMed ID: 16999525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site.
    Bertini L; Greco C; De Gioia L; Fantucci P
    J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations.
    Grabarek D; Andruniów T
    J Comput Chem; 2018 Aug; 39(22):1720-1727. PubMed ID: 29727036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry.
    Xu X; Gozem S; Olivucci M; Truhlar DG
    J Phys Chem Lett; 2013 Jan; 4(2):253-8. PubMed ID: 26283430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent High-Frequency Vibrational Dynamics in the Excited Electronic State of All-Trans Retinal Derivatives.
    Kraack JP; Buckup T; Motzkus M
    J Phys Chem Lett; 2013 Feb; 4(3):383-7. PubMed ID: 26281728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic ab initio dynamics of two models of Schiff base retinal.
    Ishida T; Nanbu S; Nakamura H
    J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysics of Schiff bases: theoretical study of salicylidene methylamine.
    Jankowska J; Rode MF; Sadlej J; Sobolewski AL
    Chemphyschem; 2012 Dec; 13(18):4287-94. PubMed ID: 23150465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the ordering of the first two excited electronic states in all-trans linear polyenes.
    Catalán J; de Paz JL
    J Chem Phys; 2004 Jan; 120(4):1864-72. PubMed ID: 15268319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitations in photoactive molecules from quantum Monte Carlo.
    Schautz F; Buda F; Filippi C
    J Chem Phys; 2004 Sep; 121(12):5836-44. PubMed ID: 15367010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled-cluster and density functional theory studies of the electronic 0-0 transitions of the DNA bases.
    Ovchinnikov VA; Sundholm D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6931-41. PubMed ID: 24595333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.