BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26617004)

  • 61. Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae.
    Li N; Wang QQ; Xu YH; Li AH; Tao YS
    Food Chem; 2020 Dec; 332():127426. PubMed ID: 32619948
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Changes in sparkling wine aroma during the second fermentation under CO
    Martínez-García R; García-Martínez T; Puig-Pujol A; Mauricio JC; Moreno J
    Food Chem; 2017 Dec; 237():1030-1040. PubMed ID: 28763947
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A simple and reliable method for the quantitative evaluation of anthocyanin adsorption by wine yeasts.
    Echeverrigaray S; Menegotto M; Delamare APL
    J Microbiol Methods; 2019 Feb; 157():88-92. PubMed ID: 30576751
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes.
    Iglesias-Carres L; Mas-Capdevila A; Bravo FI; Aragonès G; Arola-Arnal A; Muguerza B
    Food Chem; 2019 Nov; 299():125092. PubMed ID: 31280001
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rosé Sparkling Wines: Influence of Winemaking Practices on the Phytochemical Polyphenol During Aging on Lees and Commercial Storage.
    Sartor S; Burin VM; Panceri CP; Dos Passos RR; Caliari V; Bordignon-Luiz MT
    J Food Sci; 2018 Nov; 83(11):2790-2801. PubMed ID: 30370927
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Physico-chemical and chromatic characterization of malvidin 3-glucoside-vinylcatechol and malvidin 3-glucoside-vinylguaiacol wine pigments.
    Quijada-Morín N; Dangles O; Rivas-Gonzalo JC; Escribano-Bailón MT
    J Agric Food Chem; 2010 Sep; 58(17):9744-52. PubMed ID: 20707310
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins.
    Fulcrand H; Benabdeljalil C; Rigaud J; Cheynier V; Moutounet M
    Phytochemistry; 1998 Apr; 47(7):1401-7. PubMed ID: 9611832
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Non-
    Minnaar PP; du Plessis HW; Jolly NP; van der Rijst M; du Toit M
    Food Chem X; 2019 Dec; 4():100070. PubMed ID: 31656955
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Melatonin and derived l-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains.
    Fernández-Cruz E; Álvarez-Fernández MA; Valero E; Troncoso AM; García-Parrilla MC
    Food Chem; 2017 Feb; 217():431-437. PubMed ID: 27664655
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine.
    Velázquez R; Zamora E; Álvarez ML; Ramírez M
    Int J Food Microbiol; 2019 Jan; 289():134-144. PubMed ID: 30240984
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Application of ultrasound to improve lees ageing processes in red wines.
    Del Fresno JM; Loira I; Morata A; González C; Suárez-Lepe JA; Cuerda R
    Food Chem; 2018 Sep; 261():157-163. PubMed ID: 29739577
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Front-face fluorescence spectroscopy combined with second-order multivariate algorithms for the quantification of polyphenols in red wine samples.
    Cabrera-Bañegil M; Hurtado-Sánchez MD; Galeano-Díaz T; Durán-Merás I
    Food Chem; 2017 Apr; 220():168-176. PubMed ID: 27855885
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of Schizosaccharomyces strains for wine fermentation-Effect on the wine composition and food safety.
    Mylona AE; Del Fresno JM; Palomero F; Loira I; Bañuelos MA; Morata A; Calderón F; Benito S; Suárez-Lepe JA
    Int J Food Microbiol; 2016 Sep; 232():63-72. PubMed ID: 27261767
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation.
    Ling M; Qi M; Li S; Shi Y; Pan Q; Cheng C; Yang W; Duan C
    Food Chem; 2022 May; 377():131961. PubMed ID: 34990947
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preparative isolation of anthocyanins by high-speed countercurrent chromatography and application of the color activity concept to red wine.
    Degenhardt A; Hofmann S; Knapp H; Winterhalter P
    J Agric Food Chem; 2000 Dec; 48(12):5812-8. PubMed ID: 11312759
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion.
    McDougall GJ; Fyffe S; Dobson P; Stewart D
    Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of the pre-treatment and the drying process on the phenolic composition of raisins produced with a seedless Brazilian grape cultivar.
    Olivati C; de Oliveira Nishiyama YP; de Souza RT; Janzantti NS; Mauro MA; Gomes E; Hermosín-Gutiérrez I; da Silva R; Lago-Vanzela ES
    Food Res Int; 2019 Feb; 116():190-199. PubMed ID: 30716936
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spectral features and stability of oligomeric pyranoanthocyanin-flavanol pigments isolated from red wines.
    He J; Carvalho AR; Mateus N; De Freitas V
    J Agric Food Chem; 2010 Aug; 58(16):9249-58. PubMed ID: 20681623
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Oak Ellagitannins in the Synthesis of Vitisin A and in the Degradation of Malvidin 3-
    Alcalde-Eon C; Escribano-Bailón MT; García-Estévez I
    J Agric Food Chem; 2022 Oct; 70(41):13049-13061. PubMed ID: 35438989
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gel permeation chromatography of anthocyanin pigments from Rosé cider and red wine.
    Shoji T; Yanagida A; Kanda T
    J Agric Food Chem; 1999 Jul; 47(7):2885-90. PubMed ID: 10552581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.