These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 26617030)
41. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile. Demoliner F; de Britto Policarpi P; Vasconcelos LFL; Vitali L; Micke GA; Block JM Food Res Int; 2018 Oct; 112():434-442. PubMed ID: 30131155 [TBL] [Abstract][Full Text] [Related]
42. UPLC-QqQ-MS/MS-based phenolic quantification and antioxidant activity assessment for thinned young kiwifruits. Jiao Y; Chen D; Fan M; Young Quek S Food Chem; 2019 May; 281():97-105. PubMed ID: 30658772 [TBL] [Abstract][Full Text] [Related]
43. LC-MS/QTOF identification of phytochemicals and the effects of solvents on phenolic constituents and antioxidant activity of baobab (Adansonia digitata) fruit pulp. Ismail BB; Pu Y; Guo M; Ma X; Liu D Food Chem; 2019 Mar; 277():279-288. PubMed ID: 30502146 [TBL] [Abstract][Full Text] [Related]
44. Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC-ESIMS/MS identification of phenolic components. Yasir M; Sultana B; Nigam PS; Owusu-Apenten R Food Chem; 2016 May; 199():307-13. PubMed ID: 26775976 [TBL] [Abstract][Full Text] [Related]
45. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. Slatnar A; Klancar U; Stampar F; Veberic R J Agric Food Chem; 2011 Nov; 59(21):11696-702. PubMed ID: 21958361 [TBL] [Abstract][Full Text] [Related]
46. Investigation of the chemical composition of antibacterial Psidium guajava extract and partitions against foodborne pathogens. Hall AM; Baskiyar S; Heck KL; Hayden MD; Ren C; Nguyen C; Seals CD; Monu E; Calderón AI Food Chem; 2023 Mar; 403():134400. PubMed ID: 36179635 [TBL] [Abstract][Full Text] [Related]
47. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MS Brito TBN; R S Lima L; B Santos MC; A Moreira RF; Cameron LC; C Fai AE; S L Ferreira M Food Chem; 2021 Mar; 339():127882. PubMed ID: 32889131 [TBL] [Abstract][Full Text] [Related]
48. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Garaguso I; Nardini M Food Chem; 2015 Jul; 179():336-42. PubMed ID: 25722174 [TBL] [Abstract][Full Text] [Related]
49. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Kiprovski B; Mikulic-Petkovsek M; Slatnar A; Veberic R; Stampar F; Malencic D; Latkovic D Food Chem; 2015 Oct; 185():41-7. PubMed ID: 25952839 [TBL] [Abstract][Full Text] [Related]
50. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Castro-López C; Ventura-Sobrevilla JM; González-Hernández MD; Rojas R; Ascacio-Valdés JA; Aguilar CN; Martínez-Ávila GCG Food Chem; 2017 Dec; 237():1139-1148. PubMed ID: 28763961 [TBL] [Abstract][Full Text] [Related]
51. Nutraceutical potential of selected wild edible fruits of the Indian Himalayan region. Bhatt ID; Rawat S; Badhani A; Rawal RS Food Chem; 2017 Jan; 215():84-91. PubMed ID: 27542453 [TBL] [Abstract][Full Text] [Related]
52. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Orsavová J; Hlaváčová I; Mlček J; Snopek L; Mišurcová L Food Chem; 2019 Jun; 284():323-333. PubMed ID: 30744864 [TBL] [Abstract][Full Text] [Related]
53. Hydrophilic and lipophilic antioxidant activities of guava fruits. Thaipong K; Boonprakob U; Cisneros-Zevallos L; Byrne DH Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():254-7. PubMed ID: 16438219 [TBL] [Abstract][Full Text] [Related]
54. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Belwal T; Dhyani P; Bhatt ID; Rawal RS; Pande V Food Chem; 2016 Sep; 207():115-24. PubMed ID: 27080887 [TBL] [Abstract][Full Text] [Related]
55. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Liu L; Zhang R; Deng Y; Zhang Y; Xiao J; Huang F; Wen W; Zhang M Food Chem; 2017 Apr; 221():636-643. PubMed ID: 27979252 [TBL] [Abstract][Full Text] [Related]
56. Effects of industrial and home-made spread processing on bilberry phenolics. Može Bornšek S; Polak T; Skrt M; Demšar L; Poklar Ulrih N; Abram V Food Chem; 2015 Apr; 173():61-9. PubMed ID: 25465995 [TBL] [Abstract][Full Text] [Related]
57. Antioxidant and anti-inflammatory activities of freeze-dried grapefruit phenolics as affected by gum arabic and bamboo fibre addition and microwave pretreatment. García-Martínez E; Andújar I; Yuste Del Carmen A; Prohens J; Martínez-Navarrete N J Sci Food Agric; 2018 Jun; 98(8):3076-3083. PubMed ID: 29194637 [TBL] [Abstract][Full Text] [Related]
58. Guava (Psidium guajava L. cv. Red Suprema) Crude Extract Protect Human Dermal Fibroblasts against Cytotoxic Damage Mediated by Oxidative Stress. Alvarez-Suarez JM; Giampieri F; Gasparrini M; Mazzoni L; Forbes-Hernández TY; Afrin S; Battino M Plant Foods Hum Nutr; 2018 Mar; 73(1):18-24. PubMed ID: 29455277 [TBL] [Abstract][Full Text] [Related]
59. Antioxidant phenolic compounds isolated from wild Pyrus ussuriensis Maxim. fruit peels and leaves. Qiu D; Guo J; Yu H; Yan J; Yang S; Li X; Zhang Y; Sun J; Cong J; He S; Wei D; Qin JC Food Chem; 2018 Feb; 241():182-187. PubMed ID: 28958517 [TBL] [Abstract][Full Text] [Related]
60. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Flores G; Wu SB; Negrin A; Kennelly EJ Food Chem; 2015 Mar; 170():327-35. PubMed ID: 25306353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]