These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26617031)

  • 21. Influence of bovine and caprine casein phosphopeptides differing in alphas1-casein content in determining the absorption of calcium from bovine and caprine calcium-fortified milks in rats.
    Mora-Gutierrez A; Farrell HM; Attaie R; McWhinney VJ; Wang C
    J Dairy Res; 2007 Aug; 74(3):356-66. PubMed ID: 17655779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoupling macronutrient interactions during heating of model infant milk formulas.
    Murphy EG; Fenelon MA; Roos YH; Hogan SA
    J Agric Food Chem; 2014 Oct; 62(43):10585-93. PubMed ID: 25251787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo digestion of infant formula in piglets: protein digestion kinetics and release of bioactive peptides.
    Bouzerzour K; Morgan F; Cuinet I; Bonhomme C; Jardin J; Le Huërou-Luron I; Dupont D
    Br J Nutr; 2012 Dec; 108(12):2105-14. PubMed ID: 22377314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of spray drying on the difference in flavor and functional properties of liquid and dried whey proteins, milk proteins, and micellar casein concentrates.
    Carter B; Patel H; Barbano DM; Drake M
    J Dairy Sci; 2018 May; 101(5):3900-3909. PubMed ID: 29501331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of emulsifying salts on the turbidity and calcium-phosphate-protein interactions in casein micelles.
    Mizuno R; Lucey JA
    J Dairy Sci; 2005 Sep; 88(9):3070-8. PubMed ID: 16107395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns.
    Chatterton DE; Nguyen DN; Bering SB; Sangild PT
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1730-47. PubMed ID: 23660296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas.
    Miquel E; Gómez JA; Alegría A; Barberá R; Farré R; Recio I
    J Agric Food Chem; 2005 May; 53(9):3426-33. PubMed ID: 15853383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation.
    Koudelka T; Hoffmann P; Carver JA
    J Agric Food Chem; 2009 Jul; 57(13):5956-64. PubMed ID: 19527030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. True ileal amino acid digestibility of goat and cow milk infant formulas.
    Rutherfurd SM; Darragh AJ; Hendriks WH; Prosser CG; Lowry D
    J Dairy Sci; 2006 Jul; 89(7):2408-13. PubMed ID: 16772556
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions.
    Hodgkinson AJ; Wallace OAM; Boggs I; Broadhurst M; Prosser CG
    Food Chem; 2018 Apr; 245():275-281. PubMed ID: 29287371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent-mediated disruption of bovine casein micelles at alkaline pH.
    Vaia B; Smiddy MA; Kelly AL; Huppertz T
    J Agric Food Chem; 2006 Oct; 54(21):8288-93. PubMed ID: 17032041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of phosphate groups from casein with potato acid phosphatase.
    Bingham EW; Farrell HM
    Biochim Biophys Acta; 1976 Apr; 429(2):448-60. PubMed ID: 4132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility.
    Wada Y; Lönnerdal B
    J Agric Food Chem; 2014 May; 62(18):4175-85. PubMed ID: 24720734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice.
    Almaas H; Eriksen E; Sekse C; Comi I; Flengsrud R; Holm H; Jensen E; Jacobsen M; Langsrud T; Vegarud GE
    Br J Nutr; 2011 Sep; 106(6):896-905. PubMed ID: 21554806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic comparison of equine and bovine milks on renneting.
    Uniacke-Lowe T; Chevalier F; Hem S; Fox PF; Mulvihill DM
    J Agric Food Chem; 2013 Mar; 61(11):2839-50. PubMed ID: 23414207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and nongenetic factors contributing to differences in α
    Fang ZH; Bovenhuis H; Delacroix-Buchet A; Miranda G; Boichard D; Visker MHPW; Martin P
    J Dairy Sci; 2017 Jul; 100(7):5564-5577. PubMed ID: 28527801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparison of the function and conformation of human β-casein and bovine β-casein by spectroscopic study].
    Liu W; Li M; Ren HW; Liu N
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3281-7. PubMed ID: 25881424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo and in vitro gastric emptying of milk replacers containing soybean proteins.
    Caugant I; Petit HV; Ivan M; Bard C; Savoie L; Toullec R; Thirouin S; Yvon M
    J Dairy Sci; 1994 Feb; 77(2):533-40. PubMed ID: 8182177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas.
    Gómez-Gallego C; Recio I; Gómez-Gómez V; Ortuño I; Bernal MJ; Ros G; Periago MJ
    J Dairy Sci; 2016 Feb; 99(2):924-932. PubMed ID: 26686732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunodetection of added glycomacropeptide in milk formulas and milk powders.
    Oancea S; Stoia M
    Roum Arch Microbiol Immunol; 2011; 70(1):23-7. PubMed ID: 21717808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.