BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26617036)

  • 1. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays.
    Xiao-wei H; Zhi-hua L; Xiao-bo Z; Ji-yong S; Han-ping M; Jie-wen Z; Li-min H; Mel H
    Food Chem; 2016 Apr; 197(Pt A):930-6. PubMed ID: 26617036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of pork spoilage by colorimetric gas sensor array based on natural pigments.
    Huang XW; Zou XB; Shi JY; Guo Y; Zhao JW; Zhang J; Hao L
    Food Chem; 2014 Feb; 145():549-54. PubMed ID: 24128513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing the quality parameters of Chinese traditional Yao-meat by using a colorimetric sensor combined with genetic algorithm partial least squares regression.
    Huang X; Zou X; Zhao J; Shi J; Zhang X; Li Z; Shen L
    Meat Sci; 2014 Oct; 98(2):203-10. PubMed ID: 24971808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective and sensitive trimethylamine gas sensor based on cobalt imidazolate framework material.
    Chen EX; Fu HR; Lin R; Tan YX; Zhang J
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22871-5. PubMed ID: 25420211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A colorimetric sensor for qualitative discrimination and quantitative detection of volatile amines.
    Tang Z; Yang J; Yu J; Cui B
    Sensors (Basel); 2010; 10(7):6463-76. PubMed ID: 22163560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic liquid([C
    Zhao D; Zhang X; Wang W; Sui L; Guo C; Xu Y; Cheng X; Major Z; Gao S; Huo L
    Mikrochim Acta; 2021 Feb; 188(3):74. PubMed ID: 33558967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging.
    Zhai X; Li Z; Shi J; Huang X; Sun Z; Zhang D; Zou X; Sun Y; Zhang J; Holmes M; Gong Y; Povey M; Wang S
    Food Chem; 2019 Aug; 290():135-143. PubMed ID: 31000029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of chicken meat freshness by means of a colorimetric sensor array.
    Salinas Y; Ros-Lis JV; Vivancos JL; Martínez-Máñez R; Marcos MD; Aucejo S; Herranz N; Lorente I
    Analyst; 2012 Aug; 137(16):3635-43. PubMed ID: 22768392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines.
    Bang JH; Lim SH; Park E; Suslick KS
    Langmuir; 2008 Nov; 24(22):13168-72. PubMed ID: 18950204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A colorimetric sensor array for the discrimination of glucosinolates.
    Kim SY; Seo HY; Ha JH
    Food Chem; 2020 Oct; 328():127149. PubMed ID: 32480264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.
    Huang L; Zhao J; Chen Q; Zhang Y
    Food Chem; 2014 Feb; 145():228-36. PubMed ID: 24128472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO
    Chang H; Lv J; Zhang H; Zhang B; Wei W; Qiao Y
    Biosens Bioelectron; 2017 Jan; 87():579-586. PubMed ID: 27619522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast recognition of trace volatile compounds with a nanoporous dyes-based colorimetric sensor array.
    Wang Y; Zhong X; Huo D; Zhao Y; Geng X; Fa H; Luo X; Yang M; Hou C
    Talanta; 2019 Jan; 192():407-417. PubMed ID: 30348411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas chromatographic method for determination of dimethylamine, trimethylamine, and trimethylamine oxide in fish-meat frankfurters.
    Fiddler W; Doerr RC; Gates RA
    J Assoc Off Anal Chem; 1991; 74(2):400-3. PubMed ID: 2050619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Quantification of Trimethylamine.
    Li Z; Li H; LaGasse MK; Suslick KS
    Anal Chem; 2016 Jun; 88(11):5615-20. PubMed ID: 27220015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a sensor layer for the optical detection of amines during food spoilage.
    Schaude C; Meindl C; Fröhlich E; Attard J; Mohr GJ
    Talanta; 2017 Aug; 170():481-487. PubMed ID: 28501199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct detection of trimethylamine in meat food products using ion mobility spectrometry.
    Bota GM; Harrington PB
    Talanta; 2006 Jan; 68(3):629-35. PubMed ID: 18970367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness.
    Nie W; Chen Y; Zhang H; Liu J; Peng Z; Li Y
    Anal Bioanal Chem; 2022 Aug; 414(20):6017-6027. PubMed ID: 35788870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein based evaluation of meat species by using laser induced breakdown spectroscopy.
    Sezer B; Bjelak A; Velioglu HM; Boyaci IH
    Meat Sci; 2021 Feb; 172():108361. PubMed ID: 33183831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework.
    Zhang W; Sun Q; Zhu Y; Sun J; Wu Z; Tian N
    ACS Sens; 2024 Jun; 9(6):3262-3271. PubMed ID: 38809959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.