BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26617103)

  • 1. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact.
    Florová P; Sklenovský P; Banáš P; Otyepka M
    J Chem Theory Comput; 2010 Nov; 6(11):3569-79. PubMed ID: 26617103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models.
    Paschek D; Day R; García AE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse.
    Best RB; Mittal J
    J Phys Chem B; 2010 Nov; 114(46):14916-23. PubMed ID: 21038907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations of Proteins:  Can the Explicit Water Model Be Varied?
    Nutt DR; Smith JC
    J Chem Theory Comput; 2007 Jul; 3(4):1550-60. PubMed ID: 26633225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force field influences in beta-hairpin folding simulations.
    Lwin TZ; Luo R
    Protein Sci; 2006 Nov; 15(11):2642-55. PubMed ID: 17075138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting order and disorder for β-peptide foldamers in water.
    Németh LJ; Hegedüs Z; Martinek TA
    J Chem Inf Model; 2014 Oct; 54(10):2776-83. PubMed ID: 25177775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hydration behavior and conformational preferences of the Trp-cage mini-protein in different rigid-body water models.
    Gupta M; Nayar D; Chakravarty C; Bandyopadhyay S
    Phys Chem Chem Phys; 2016 Dec; 18(48):32796-32813. PubMed ID: 27878168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set.
    Robinson MK; Monroe JI; Shell MS
    J Chem Theory Comput; 2016 Nov; 12(11):5631-5642. PubMed ID: 27731628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations.
    Cino EA; Choy WY; Karttunen M
    J Chem Theory Comput; 2012 Aug; 8(8):2725-2740. PubMed ID: 22904695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State.
    Boonstra S; Onck PR; Giessen Ev
    J Phys Chem B; 2016 Apr; 120(15):3692-8. PubMed ID: 27031562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model.
    Nayar D; Chakravarty C
    Phys Chem Chem Phys; 2014 Jun; 16(21):10199-213. PubMed ID: 24695799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Protein-Solvent Force Fields to Reproduce Intrinsic Conformational Preferences of Model Peptides.
    Nerenberg PS; Head-Gordon T
    J Chem Theory Comput; 2011 Apr; 7(4):1220-30. PubMed ID: 26606367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.