These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 266172)

  • 21. Origin of rate-acceleration in ester hydrolysis with metalloprotease mimics.
    Kim DH; Lee SS
    Bioorg Med Chem; 2000 Mar; 8(3):647-52. PubMed ID: 10732981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct chemical evidence for the mixed anhydride intermediate of carboxypeptidase A in ester and peptide hydrolysis.
    Sander ME; Witzel H
    Biochem Biophys Res Commun; 1985 Oct; 132(2):681-7. PubMed ID: 4062944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basic and non-basic substrates of carboxypeptidase B.
    Zisapel N; Kurn-Abramowitz N; Sokolovsky M
    Eur J Biochem; 1973 Jun; 35(3):507-11. PubMed ID: 4738393
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction of carboxypeptidase A with carbamate and carbonate esters.
    King SW; Lum VR; Fife TH
    Biochemistry; 1987 Apr; 26(8):2294-300. PubMed ID: 3620447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hydrolysis of esters of N-hippurylglycine and N-pivaloylglycine by carboxypeptidase A.
    Bunting JW; Chu SS
    Biochim Biophys Acta; 1978 Jun; 524(2):393-402. PubMed ID: 566567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse role of conformational dynamics in carboxypeptidase A-driven peptide and ester hydrolyses: disclosing the "perfect induced fit" and "protein local unfolding" pathways by altering protein stability.
    Shushanyan M; Khoshtariya DE; Tretyakova T; Makharadze M; van Eldik R
    Biopolymers; 2011 Dec; 95(12):852-70. PubMed ID: 21698595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate inhibition in the hydrolysis of N-acylglycine esters by carboxypeptidase A.
    Bunting JW; Chu SS
    Biochim Biophys Acta; 1978 May; 524(1):142-55. PubMed ID: 566122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the hydrolytic properties of (serine) carboxypeptidase Y.
    Stennicke HR; Mortensen UH; Breddam K
    Biochemistry; 1996 Jun; 35(22):7131-41. PubMed ID: 8679540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A.
    Auld DS; Galdes A; Geoghegan KF; Holmquist B; Martinelli RA; Vallee BL
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5041-5. PubMed ID: 6591178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Common acylcarboxypeptidase A intermediates for ester substrates containing different cleaving alcohols.
    Suh J; Hong SB; Chung S
    J Biol Chem; 1986 Jun; 261(16):7112-4. PubMed ID: 3711078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Enzyme intermediates with the C-terminal products of substrate hydrolysis by carboxypeptidase A and chymotrypsin. Use of the free energy linearity principle].
    Kozlov LV
    Biokhimiia; 1980 Aug; 45(8):1442-7. PubMed ID: 7236796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of D2O on the carboxypeptidase-catalyzed hydrolysis of O-(trans-cinnamoyl)-L-beta-phenyllactate and N-(N-benzoylglycyl)-L-phenylalanine.
    Kaiser BL; Kaiser ET
    Proc Natl Acad Sci U S A; 1969 Sep; 64(1):36-41. PubMed ID: 5263018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates.
    Hayashi R; Bai Y; Hata T
    J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hippuryl-alpha-methylphenylalanine and hippuryl-alpha-methylphenyllactic acid as substrates for carboxypeptidase A. Syntheses, kinetic evaluation and mechanistic implication.
    Lee M; Kim DH
    Bioorg Med Chem; 2000 Apr; 8(4):815-23. PubMed ID: 10819170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and dynamics of the metal site of cadmium-substituted carboxypeptidase A in solution and crystalline states and under steady-state peptide hydrolysis.
    Bauer R; Danielsen E; Hemmingsen L; Sorensen MV; Ulstrup J; Friis EP; Auld DS; Bjerrum MJ
    Biochemistry; 1997 Sep; 36(38):11514-24. PubMed ID: 9298972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluxionate Lewis acidity of the Zn2+ ion in carboxypeptidase A.
    Mock WL; Freeman DJ; Aksamawati M
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):185-93. PubMed ID: 8424757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosyl interactions at the active site of carboxypeptidase B.
    Zisapel N; Mallul Y; Sokolovsky M
    Int J Pept Protein Res; 1982 May; 19(5):480-6. PubMed ID: 7118417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic implications of cyanide binding to carboxypeptidase B.
    Zisapel N; Sokolovsky M
    Int J Pept Protein Res; 1982 May; 19(5):470-9. PubMed ID: 7118416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic studies of carboxypeptidase Y. III. Action on ester, amide, and anilide substrates and the effects of some environmental factors.
    Bai Y; Hayashi R; Hata T
    J Biochem; 1975 Sep; 78(3):617-26. PubMed ID: 5415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.