BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26617242)

  • 1. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.
    Wang D; Zhong H; Zhai Y; Hu H; Jin B; Wan M
    Ultrasound Med Biol; 2016 Feb; 42(2):561-73. PubMed ID: 26617242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of guided waves in bone on pulse-inversion contrast-enhanced ultrasound.
    Wang D; Zhang X; Sang Y; Qu Z; Su Q; Zhao J; Wan M
    Med Phys; 2019 Aug; 46(8):3475-3482. PubMed ID: 31145816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents.
    Eisenbrey JR; Huang P; Hsu J; Wheatley MA
    Ultrasonics; 2009 Dec; 49(8):628-33. PubMed ID: 19394992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and analysis of multimode guided waves in tibia cortical bone.
    Ta DA; Huang K; Wang WQ; Wang YY; Le LH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e279-84. PubMed ID: 16846626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC.
    van Rooij T; Luan Y; Renaud G; van der Steen AF; Versluis M; de Jong N; Kooiman K
    Ultrasound Med Biol; 2015 May; 41(5):1432-45. PubMed ID: 25724308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency dynamics of ultrasound contrast agents.
    Sun Y; Kruse DE; Dayton PA; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1981-91. PubMed ID: 16422410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles.
    Joshi A; Lindsey BD; Dayton PA; Pinton G; Muller M
    Phys Med Biol; 2017 May; 62(10):4202-4217. PubMed ID: 28266925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced heat deposition using ultrasound contrast agent--modeling and experimental observations.
    Razansky D; Einziger PD; Adam DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):137-47. PubMed ID: 16471440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
    Cho E; Chung SK; Rhee K
    Ultrasonics; 2015 Sep; 62():66-74. PubMed ID: 26025507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal dosage of ultrasound contrast agent for ultrasound surgery: thermal effect of linear plane wave.
    Seo J
    Ultrasonics; 2009 Jun; 49(6-7):565-8. PubMed ID: 19345389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.
    Tran TN; Nguyen KC; Sacchi MD; Le LH
    Ultrasound Med Biol; 2014 Nov; 40(11):2715-27. PubMed ID: 25282483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging.
    Shekhar H; Rychak JJ; Doyley MM
    Med Phys; 2013 Aug; 40(8):082903. PubMed ID: 23927358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of self-demodulation on the subharmonic response of contrast agent microbubbles.
    Daeichin V; Faez T; Renaud G; Bosch JG; van der Steen AF; de Jong N
    Phys Med Biol; 2012 Jun; 57(12):3675-91. PubMed ID: 22614693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of dose distribution of molecular delivery after blood-brain barrier disruption by focused ultrasound with treatment planning.
    Yang FY; Chen CC; Kao YH; Chen CL; Ko CE; Horng SC; Chen RC
    Ultrasound Med Biol; 2013 Apr; 39(4):620-7. PubMed ID: 23384461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental characterisation of magnetic microbubbles.
    Mulvana H; Eckersley RJ; Tang MX; Pankhurst Q; Stride E
    Ultrasound Med Biol; 2012 May; 38(5):864-75. PubMed ID: 22480944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.
    Gourevich D; Volovick A; Dogadkin O; Wang L; Mulvana H; Medan Y; Melzer A; Cochran S
    Ultrasound Med Biol; 2015 Jul; 41(7):1853-64. PubMed ID: 25887690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.