BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26617255)

  • 1. Dopant morphology as the factor limiting graphene conductivity.
    Hofmann M; Hsieh YP; Chang KW; Tsai HG; Chen TT
    Sci Rep; 2015 Nov; 5():17393. PubMed ID: 26617255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors.
    Chang KW; Hsieh YP; Ting CC; Su YH; Hofmann M
    Sci Rep; 2017 Aug; 7(1):9052. PubMed ID: 28831126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Nitrogen Doping in Graphene with Atomic Precision: Synthesis and Characterization.
    Granzier-Nakajima T; Fujisawa K; Anil V; Terrones M; Yeh YT
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30871112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman characterization of defects and dopants in graphene.
    Beams R; Gustavo Cançado L; Novotny L
    J Phys Condens Matter; 2015 Mar; 27(8):083002. PubMed ID: 25634863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulating Chemically Doped Graphene via Atomic Layer Deposition.
    Black A; Urbanos FJ; Osorio MR; Miranda R; Vázquez de Parga AL; Granados D
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8190-8196. PubMed ID: 29461040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of Electrical Conductivity in Conjugated Polymers through Cascade Doping with Small-Molecular Dopants.
    Yoon SE; Park J; Kwon JE; Lee SY; Han JM; Go CY; Choi S; Kim KC; Seo H; Kim JH; Kim BG
    Adv Mater; 2020 Dec; 32(49):e2005129. PubMed ID: 33135210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-phase molecular doping of graphene for high-performance transparent electrodes.
    Kim Y; Ryu J; Park M; Kim ES; Yoo JM; Park J; Kang JH; Hong BH
    ACS Nano; 2014 Jan; 8(1):868-74. PubMed ID: 24313602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C
    Cui P; Choi JH; Zeng C; Li Z; Yang J; Zhang Z
    J Am Chem Soc; 2017 May; 139(21):7196-7202. PubMed ID: 28497683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.
    Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S
    Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconductivity in Ca-doped graphene laminates.
    Chapman J; Su Y; Howard CA; Kundys D; Grigorenko AN; Guinea F; Geim AK; Grigorieva IV; Nair RR
    Sci Rep; 2016 Mar; 6():23254. PubMed ID: 26979564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films.
    Bult JB; Crisp R; Perkins CL; Blackburn JL
    ACS Nano; 2013 Aug; 7(8):7251-61. PubMed ID: 23859709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable hole doping of graphene for low electrical resistance and high optical transparency.
    Tongay S; Berke K; Lemaitre M; Nasrollahi Z; Tanner DB; Hebard AF; Appleton BR
    Nanotechnology; 2011 Oct; 22(42):425701. PubMed ID: 21934196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?
    De S; Coleman JN
    ACS Nano; 2010 May; 4(5):2713-20. PubMed ID: 20384321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavily Doped, Charge-Balanced Fluorescent Organic Light-Emitting Diodes from Direct Charge Trapping of Dopants in Emission Layer.
    Rhee SH; Kim SH; Kim HS; Shin JY; Bastola J; Ryu SY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16750-9. PubMed ID: 26151550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effects of Graphene Stacking on the Performance of Methane Sensor: A First-Principles Study on the Adsorption, Band Gap and Doping of Graphene.
    Yang N; Yang D; Zhang G; Chen L; Liu D; Cai M; Fan X
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.
    Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH
    ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene.
    Knight S; Hofmann T; Bouhafs C; Armakavicius N; Kühne P; Stanishev V; Ivanov IG; Yakimova R; Wimer S; Schubert M; Darakchieva V
    Sci Rep; 2017 Jul; 7(1):5151. PubMed ID: 28698648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing individual nitrogen dopants in monolayer graphene.
    Zhao L; He R; Rim KT; Schiros T; Kim KS; Zhou H; Gutiérrez C; Chockalingam SP; Arguello CJ; Pálová L; Nordlund D; Hybertsen MS; Reichman DR; Heinz TF; Kim P; Pinczuk A; Flynn GW; Pasupathy AN
    Science; 2011 Aug; 333(6045):999-1003. PubMed ID: 21852495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping.
    Mansour AE; Kirmani AR; Barlow S; Marder SR; Amassian A
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20020-20028. PubMed ID: 28535037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.