These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26617255)

  • 41. Molecular adsorbates as probes of the local properties of doped graphene.
    Pham VD; Joucken F; Repain V; Chacon C; Bellec A; Girard Y; Rousset S; Sporken R; dos Santos MC; Lagoute J
    Sci Rep; 2016 Apr; 6():24796. PubMed ID: 27097555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene.
    Pham VP; Kim KN; Jeon MH; Kim KS; Yeom GY
    Nanoscale; 2014 Dec; 6(24):15301-8. PubMed ID: 25385489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing the conductivity of transparent graphene films via doping.
    Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J
    Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disorder-driven doping activation in organic semiconductors.
    Fediai A; Emering A; Symalla F; Wenzel W
    Phys Chem Chem Phys; 2020 May; 22(18):10256-10264. PubMed ID: 32352139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects.
    He CN; Huang WQ; Xu L; Yang YC; Zhou BX; Huang GF; Peng P; Liu WM
    Sci Rep; 2016 Feb; 6():22267. PubMed ID: 26923338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions.
    Dissanayake DM; Ashraf A; Dwyer D; Kisslinger K; Zhang L; Pang Y; Efstathiadis H; Eisaman MD
    Sci Rep; 2016 Feb; 6():21070. PubMed ID: 26867673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes.
    Kasry A; Kuroda MA; Martyna GJ; Tulevski GS; Bol AA
    ACS Nano; 2010 Jul; 4(7):3839-44. PubMed ID: 20695514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of doping- and field-induced charge carrier density on the electron transport in nanocrystalline ZnO.
    Hammer MS; Rauh D; Lorrmann V; Deibel C; Dyakonov V
    Nanotechnology; 2008 Dec; 19(48):485701. PubMed ID: 21836308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Doping-Induced Tunable Wettability and Adhesion of Graphene.
    Ashraf A; Wu Y; Wang MC; Yong K; Sun T; Jing Y; Haasch RT; Aluru NR; Nam S
    Nano Lett; 2016 Jul; 16(7):4708-12. PubMed ID: 27351580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Doping and defect association in AZrO(3) (A = Ca, Ba) and LaMO(3) (M = Sc, Ga) perovskite-type ionic conductors.
    Islam MS; Slater PR; Tolchard JR; Dinges T
    Dalton Trans; 2004 Oct; (19):3061-6. PubMed ID: 15452631
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene Fermi Level-Guided Attachment of Single Exoelectrogens and Induced Interfacial Doping.
    Nemade R; Cotts S; Berry V
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5548-5553. PubMed ID: 38287002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Doping stability of nonphotorefractive ions in stoichiometric and congruent LiNbO
    Li L; Li Y; Zhao X
    Phys Chem Chem Phys; 2018 Jun; 20(25):17477-17486. PubMed ID: 29911707
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene.
    Li H; Singh A; Bayram F; Childress AS; Rao AM; Koley G
    Nanoscale; 2019 Jun; 11(23):11145-11151. PubMed ID: 31143919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In-situ Raman spectroscopy to elucidate the influence of adsorption in graphene electrochemistry.
    van den Beld WT; Odijk M; Vervuurt RH; Weber JW; Bol AA; van den Berg A; Eijkel JC
    Sci Rep; 2017 Mar; 7():45080. PubMed ID: 28338094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and mechanistic study of in situ halogen/nitrogen dual-doping in graphene tailored by stepwise pyrolysis of ionic liquids.
    Park OK; Kim HJ; Hwang JY; Lee DS; Koo J; Lee H; Yu JS; Ku BC; Lee JK
    Nanotechnology; 2015 Mar; 26(11):115601. PubMed ID: 25706065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduction of hole doping of chemical vapor deposition grown graphene by photoresist selection and thermal treatment.
    Sul O; Kim K; Choi E; Kil J; Park W; Lee SB
    Nanotechnology; 2016 Dec; 27(50):505205. PubMed ID: 27855119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrical Conductivity Modeling of Graphene-based Conductor Materials.
    Rizzi L; Zienert A; Schuster J; Köhne M; Schulz SE
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43088-43094. PubMed ID: 30426736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From composites to solid solutions: modeling of ionic conductivity in the CaF2-BaF2 system.
    Zahn D; Heitjans P; Maier J
    Chemistry; 2012 May; 18(20):6225-9. PubMed ID: 22488848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.