BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 26617256)

  • 1. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: a MD simulation study.
    Lesch V; Li Z; Bedrov D; Borodin O; Heuer A
    Phys Chem Chem Phys; 2016 Jan; 18(1):382-92. PubMed ID: 26617256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4].
    Haskins JB; Bennett WR; Wu JJ; Hernández DM; Borodin O; Monk JD; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2014 Sep; 118(38):11295-309. PubMed ID: 25159701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids.
    Borodin O; Smith GD; Henderson W
    J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation Structure and Dynamics of Li
    Huang Q; Lourenço TC; Costa LT; Zhang Y; Maginn EJ; Gurkan B
    J Phys Chem B; 2019 Jan; 123(2):516-527. PubMed ID: 30543427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study.
    Li Z; Borodin O; Smith GD; Bedrov D
    J Phys Chem B; 2015 Feb; 119(7):3085-96. PubMed ID: 25592777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation and pulsed-field gradient NMR studies of bis(fluorosulfonyl)imide (FSI) and bis[(trifluoromethyl)sulfonyl]imide (TFSI)-based ionic liquids.
    Borodin O; Gorecki W; Smith GD; Armand M
    J Phys Chem B; 2010 May; 114(20):6786-98. PubMed ID: 20433203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined theoretical and experimental study of the influence of different anion ratios on lithium ion dynamics in ionic liquids.
    Lesch V; Jeremias S; Moretti A; Passerini S; Heuer A; Borodin O
    J Phys Chem B; 2014 Jul; 118(26):7367-75. PubMed ID: 24905999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.
    Costa LT; Sun B; Jeschull F; Brandell D
    J Chem Phys; 2015 Jul; 143(2):024904. PubMed ID: 26178124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced lithium transference numbers in ionic liquid electrolytes.
    Frömling T; Kunze M; Schönhoff M; Sundermeyer J; Roling B
    J Phys Chem B; 2008 Oct; 112(41):12985-90. PubMed ID: 18800824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of LiTFSI-acetamide electrolytes: structural properties.
    Li S; Cao Z; Peng Y; Liu L; Wang Y; Wang S; Wang JQ; Yan T; Gao XP; Song DY; Shen PW
    J Phys Chem B; 2008 May; 112(20):6398-410. PubMed ID: 18444674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study.
    Li Z; Smith GD; Bedrov D
    J Phys Chem B; 2012 Oct; 116(42):12801-9. PubMed ID: 22978679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations.
    Borodin O; Smith GD
    J Phys Chem B; 2006 Jun; 110(23):11481-90. PubMed ID: 16771423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI.
    Borodin O; Smith GD; Geiculescu O; Creager SE; Hallac B; DesMarteau D
    J Phys Chem B; 2006 Nov; 110(47):24266-74. PubMed ID: 17125400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Transport Properties of Lithium-Doped Aprotic and Protic Ionic Liquid Electrolytes: Insights from Molecular Dynamics Simulations.
    Nasrabadi AT; Ganesan V
    J Phys Chem B; 2019 Jul; 123(26):5588-5600. PubMed ID: 31244094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarizable Molecular Dynamics and Experiments of 1,2-Dimethoxyethane Electrolytes with Lithium and Sodium Salts: Structure and Transport Properties.
    Liyana-Arachchi TP; Haskins JB; Burke CM; Diederichsen KM; McCloskey BD; Lawson JW
    J Phys Chem B; 2018 Sep; 122(36):8548-8559. PubMed ID: 30130409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity and Nanostructure of Superconcentrated LiTFSI-EmimTFSI Hybrid Aqueous Electrolytes: Beyond the 21 m Limit of Water-in-Salt Electrolyte.
    Dhattarwal HS; Kashyap HK
    J Phys Chem B; 2022 Jul; 126(28):5291-5304. PubMed ID: 35819799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid.
    Monteiro MJ; Bazito FF; Siqueira LJ; Ribeiro MC; Torresi RM
    J Phys Chem B; 2008 Feb; 112(7):2102-9. PubMed ID: 18220384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations.
    Umebayashi Y; Mitsugi T; Fukuda S; Fujimori T; Fujii K; Kanzaki R; Takeuchi M; Ishiguro S
    J Phys Chem B; 2007 Nov; 111(45):13028-32. PubMed ID: 17949034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids.
    Lassègues JC; Grondin J; Aupetit C; Johansson P
    J Phys Chem A; 2009 Jan; 113(1):305-14. PubMed ID: 19072213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.