BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26617267)

  • 1. Generation of artificial drooping leaf mutants by CRISPR-Cas9 technology in rice.
    Ikeda T; Tanaka W; Mikami M; Endo M; Hirano HY
    Genes Genet Syst; 2016; 90(4):231-5. PubMed ID: 26617267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide expression profiling and identification of genes under the control of the DROOPING LEAF gene during midrib development in rice.
    Abiko M; Ohmori Y; Hirano HY
    Genes Genet Syst; 2008 Jun; 83(3):237-44. PubMed ID: 18670135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice.
    Ohmori Y; Toriba T; Nakamura H; Ichikawa H; Hirano HY
    Plant J; 2011 Jan; 65(1):77-86. PubMed ID: 21175891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of CRISPR/Cas9 generated drooping leaf (dl) alleles on midrib and carpel formations in Oryza sativa Nipponbare.
    Janthabut T; Tristianto C; Sakulkoo J; Sunvittayakul P; Suttangkakul A; Gomez LD; Vuttipongchaikij S; Sakulsingharoj C
    Planta; 2022 Aug; 256(3):61. PubMed ID: 35994211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transposon, Ping, is integrated into intron 4 of the DROOPING LEAF gene of rice, weakly reducing its expression and causing a mild drooping leaf phenotype.
    Ohmori Y; Abiko M; Horibata A; Hirano HY
    Plant Cell Physiol; 2008 Aug; 49(8):1176-84. PubMed ID: 18593744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.
    Yamaguchi T; Nagasawa N; Kawasaki S; Matsuoka M; Nagato Y; Hirano HY
    Plant Cell; 2004 Feb; 16(2):500-9. PubMed ID: 14729915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of a DROOPING LEAF mutant allele dl-6 associated with a twisted and folded leaf base caused by a deficiency in midrib development in rice.
    Kang SG; Lee DS; Do GS; Pandeya D; Matin MN
    J Plant Physiol; 2022 Dec; 279():153837. PubMed ID: 36279633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice.
    Nagasawa N; Miyoshi M; Sano Y; Satoh H; Hirano H; Sakai H; Nagato Y
    Development; 2003 Feb; 130(4):705-18. PubMed ID: 12506001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice.
    Toriba T; Hirano HY
    Plant J; 2014 Feb; 77(4):616-26. PubMed ID: 24330191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.
    Kubo FC; Yasui Y; Kumamaru T; Sato Y; Hirano HY
    Genes Genet Syst; 2017 Mar; 91(4):235-240. PubMed ID: 27522959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of
    Jung YJ; Kim JH; Lee HJ; Kim DH; Yu J; Bae S; Cho YG; Kang KK
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32752068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses.
    Ishikawa M; Ohmori Y; Tanaka W; Hirabayashi C; Murai K; Ogihara Y; Yamaguchi T; Hirano HY
    Genes Genet Syst; 2009 Apr; 84(2):137-46. PubMed ID: 19556707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice Flower Development Revisited: Regulation of Carpel Specification and Flower Meristem Determinacy.
    Sugiyama SH; Yasui Y; Ohmori S; Tanaka W; Hirano HY
    Plant Cell Physiol; 2019 Jun; 60(6):1284-1295. PubMed ID: 30715478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system.
    Xu RF; Li H; Qin RY; Li J; Qiu CH; Yang YC; Ma H; Li L; Wei PC; Yang JB
    Sci Rep; 2015 Jun; 5():11491. PubMed ID: 26089199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves.
    Pérez L; Soto E; Villorbina G; Bassie L; Medina V; Muñoz P; Capell T; Zhu C; Christou P; Farré G
    Transgenic Res; 2018 Oct; 27(5):423-439. PubMed ID: 30099722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Mutagenesis of the Rice
    Gao Q; Li G; Sun H; Xu M; Wang H; Ji J; Wang D; Yuan C; Zhao X
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis.
    Yang X; Chen L; He J; Yu W
    Plant Cell Rep; 2017 Oct; 36(10):1533-1545. PubMed ID: 28676963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.