These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26617278)
1. A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity. Sherry A; Osborne KA; Sidgwick FR; Gray ND; Talbot HM Environ Microbiol Rep; 2016 Feb; 8(1):122-31. PubMed ID: 26617278 [TBL] [Abstract][Full Text] [Related]
2. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Lin JL; Joye SB; Scholten JC; Schäfer H; McDonald IR; Murrell JC Appl Environ Microbiol; 2005 Oct; 71(10):6458-62. PubMed ID: 16204580 [TBL] [Abstract][Full Text] [Related]
3. Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: implications for methane metabolism. Chen S; Wang P; Liu H; Xie W; Wan XS; Kao SJ; Phelps TJ; Zhang C Appl Microbiol Biotechnol; 2020 Feb; 104(3):1331-1346. PubMed ID: 31858192 [TBL] [Abstract][Full Text] [Related]
4. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau. Deng Y; Liu Y; Dumont M; Conrad R Microb Ecol; 2017 Jan; 73(1):101-110. PubMed ID: 27878346 [TBL] [Abstract][Full Text] [Related]
5. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. He R; Wooller MJ; Pohlman JW; Catranis C; Quensen J; Tiedje JM; Leigh MB Environ Microbiol; 2012 Jun; 14(6):1403-19. PubMed ID: 22429394 [TBL] [Abstract][Full Text] [Related]
6. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes. He R; Wooller MJ; Pohlman JW; Quensen J; Tiedje JM; Leigh MB Appl Environ Microbiol; 2012 Jul; 78(13):4715-23. PubMed ID: 22522690 [TBL] [Abstract][Full Text] [Related]
7. [Abundance and diversity of methanotrophic Gammaproteobacteria in northern wetlands]. Danilova OV; Dedysh SN Mikrobiologiia; 2014; 83(2):204-14. PubMed ID: 25423724 [TBL] [Abstract][Full Text] [Related]
8. Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Kaluzhnaya M; Khmelenina V; Eshinimaev B; Suzina N; Nikitin D; Solonin A; Lin JL; McDonald I; Murrell C; Trotsenko Y Syst Appl Microbiol; 2001 Jul; 24(2):166-76. PubMed ID: 11518319 [TBL] [Abstract][Full Text] [Related]
9. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Kumaresan D; Héry M; Bodrossy L; Singer AC; Stralis-Pavese N; Thompson IP; Murrell JC Res Microbiol; 2011 Dec; 162(10):1027-32. PubMed ID: 21925596 [TBL] [Abstract][Full Text] [Related]
10. Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Lin JL; Radajewski S; Eshinimaev BT; Trotsenko YA; McDonald IR; Murrell JC Environ Microbiol; 2004 Oct; 6(10):1049-60. PubMed ID: 15344930 [TBL] [Abstract][Full Text] [Related]
11. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Sorokin DY; Jones BE; Kuenen JG Extremophiles; 2000 Jun; 4(3):145-55. PubMed ID: 10879559 [TBL] [Abstract][Full Text] [Related]
12. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Sundh I; Bastviken D; Tranvik LJ Appl Environ Microbiol; 2005 Nov; 71(11):6746-52. PubMed ID: 16269705 [TBL] [Abstract][Full Text] [Related]
14. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Su Y; Zhang X; Xia FF; Zhang QQ; Kong JY; Wang J; He R Syst Appl Microbiol; 2014 May; 37(3):200-7. PubMed ID: 24332193 [TBL] [Abstract][Full Text] [Related]
15. Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Rahalkar M; Schink B Appl Environ Microbiol; 2007 Jul; 73(13):4389-94. PubMed ID: 17483263 [TBL] [Abstract][Full Text] [Related]
16. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. Mohanty SR; Bodelier PL; Conrad R FEMS Microbiol Ecol; 2007 Oct; 62(1):24-31. PubMed ID: 17725622 [TBL] [Abstract][Full Text] [Related]
17. Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments. Deutzmann JS; Wörner S; Schink B Appl Environ Microbiol; 2011 Apr; 77(8):2573-81. PubMed ID: 21335392 [TBL] [Abstract][Full Text] [Related]
18. Ammonium promoting methane oxidation by stimulating the Type Ia methane-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary. Xia F; Jiang QY; Zhu T; Zou B; Liu H; Quan ZX Sci Total Environ; 2021 Nov; 793():148470. PubMed ID: 34166901 [TBL] [Abstract][Full Text] [Related]
19. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. Crevecoeur S; Vincent WF; Comte J; Matveev A; Lovejoy C PLoS One; 2017; 12(11):e0188223. PubMed ID: 29182670 [TBL] [Abstract][Full Text] [Related]
20. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Erwin DP; Erickson IK; Delwiche ME; Colwell FS; Strap JL; Crawford RL Appl Environ Microbiol; 2005 Apr; 71(4):2016-25. PubMed ID: 15812034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]