BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 26617305)

  • 1. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium.
    Dolgonos G; Aradi B; Moreira NH; Frauenheim T
    J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling realistic TiO
    Selli D; Fazio G; Di Valentin C
    J Chem Phys; 2017 Oct; 147(16):164701. PubMed ID: 29096504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient way to model complex magnetite: Assessment of SCC-DFTB against DFT.
    Liu H; Seifert G; Di Valentin C
    J Chem Phys; 2019 Mar; 150(9):094703. PubMed ID: 30849917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70).
    Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K
    J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces.
    Nénon S; Champagne B
    J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2.
    Li W; Kotsis K; Manzhos S
    Phys Chem Chem Phys; 2016 Jul; 18(29):19902-17. PubMed ID: 27400036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Looking at self-consistent-charge density functional tight binding from a semiempirical perspective.
    Otte N; Scholten M; Thiel W
    J Phys Chem A; 2007 Jul; 111(26):5751-5. PubMed ID: 17385847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs.
    Arroyo-de Dompablo ME; Morales-García A; Taravillo M
    J Chem Phys; 2011 Aug; 135(5):054503. PubMed ID: 21823708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method.
    Witek HA; Morokuma K
    J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method.
    Witek HA; Irle S; Morokuma K
    J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-interaction and strong correlation in DFTB.
    Hourahine B; Sanna S; Aradi B; Köhler C; Niehaus T; Frauenheim T
    J Phys Chem A; 2007 Jul; 111(26):5671-7. PubMed ID: 17552499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22.
    Choi TH; Jordan KD
    J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attaching titania clusters of various size to reduced graphene oxide and its impact on the conceivable photocatalytic behavior of the junctions-a DFT/D  +  U and TD DFTB modeling.
    Piskorz W; Zasada F; Wójtowicz G; Morawski A; Macyk W; Sojka Z
    J Phys Condens Matter; 2019 Oct; 31(40):404001. PubMed ID: 31226702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of the SCC-DFTB Model for Description of Five-Membered Ring Carbohydrate Conformations: Comparison to Force Fields, High-Level Electronic Structure Methods, and Experiment.
    Islam SM; Roy PN
    J Chem Theory Comput; 2012 Jul; 8(7):2412-23. PubMed ID: 26588973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.