These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26617396)
21. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells. Zhang SJ; Lin SS; Li XQ; Liu XY; Wu HA; Xu WL; Wang P; Wu ZQ; Zhong HK; Xu ZJ Nanoscale; 2016 Jan; 8(1):226-32. PubMed ID: 26646647 [TBL] [Abstract][Full Text] [Related]
22. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073 [TBL] [Abstract][Full Text] [Related]
23. Organic Intercalant-Free Liquid Exfoliation Route to Layered Metal-Oxide Nanosheets via the Control of Electrostatic Interlayer Interaction. Lee JM; Kang B; Jo YK; Hwang SJ ACS Appl Mater Interfaces; 2019 Mar; 11(12):12121-12132. PubMed ID: 30838851 [TBL] [Abstract][Full Text] [Related]
24. Concurrent phosphorus doping and reduction of graphene oxide. Poh HL; Sofer Z; Nováček M; Pumera M Chemistry; 2014 Apr; 20(15):4284-91. PubMed ID: 24590694 [TBL] [Abstract][Full Text] [Related]
25. How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Abdelkader AM; Cooper AJ; Dryfe RA; Kinloch IA Nanoscale; 2015 Apr; 7(16):6944-56. PubMed ID: 25703415 [TBL] [Abstract][Full Text] [Related]
26. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor. Ang PK; Wang S; Bao Q; Thong JT; Loh KP ACS Nano; 2009 Nov; 3(11):3587-94. PubMed ID: 19788171 [TBL] [Abstract][Full Text] [Related]
27. Graphene: powder, flakes, ribbons, and sheets. James DK; Tour JM Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286 [TBL] [Abstract][Full Text] [Related]
28. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137 [TBL] [Abstract][Full Text] [Related]
29. Diazonium functionalized graphene: microstructure, electric, and magnetic properties. Huang P; Jing L; Zhu H; Gao X Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937 [TBL] [Abstract][Full Text] [Related]
30. Large scale production of highly-qualified graphene by ultrasonic exfoliation of expanded graphite under the promotion of (NH4)2CO3 decomposition. Wang Y; Tong X; Guo X; Wang Y; Jin G; Guo X Nanotechnology; 2013 Nov; 24(47):475602. PubMed ID: 24192455 [TBL] [Abstract][Full Text] [Related]
31. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Wang C; Zhou Y; He L; Ng TW; Hong G; Wu QH; Gao F; Lee CS; Zhang W Nanoscale; 2013 Jan; 5(2):600-5. PubMed ID: 23203220 [TBL] [Abstract][Full Text] [Related]
32. Efficient preparation of high-quality graphene via anodic and cathodic simultaneous electrochemical exfoliation under the assistance of microwave. Wu J; Wang H; Qiu J; Zhang K; Shao J; Yan L J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1422-1431. PubMed ID: 34742062 [TBL] [Abstract][Full Text] [Related]
33. Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt. Kim H; Renault O; Tyurnina A; Guillet JF; Simonato JP; Rouchon D; Mariolle D; Chevalier N; Dijon J Ultramicroscopy; 2015 Dec; 159 Pt 3():470-5. PubMed ID: 26190008 [TBL] [Abstract][Full Text] [Related]
34. Oh, the places you'll go with graphene. Wassei JK; Kaner RB Acc Chem Res; 2013 Oct; 46(10):2244-53. PubMed ID: 23305347 [TBL] [Abstract][Full Text] [Related]
35. Ultrafast alternating-current exfoliation toward large-scale synthesis of graphene and its application for flexible supercapacitors. Zhang Y; Hou W; Chang R; Yao X; Xu Y J Colloid Interface Sci; 2024 Jan; 654(Pt A):246-257. PubMed ID: 37839241 [TBL] [Abstract][Full Text] [Related]
36. Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Toh RJ; Poh HL; Sofer Z; Pumera M Chem Asian J; 2013 Jun; 8(6):1295-300. PubMed ID: 23495248 [TBL] [Abstract][Full Text] [Related]
37. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Chen CH; Yang SW; Chuang MC; Woon WY; Su CY Nanoscale; 2015 Oct; 7(37):15362-73. PubMed ID: 26332120 [TBL] [Abstract][Full Text] [Related]
38. Fine tuning of graphene properties by modification with aryl halogens. Bouša D; Pumera M; Sedmidubský D; Šturala J; Luxa J; Mazánek V; Sofer Z Nanoscale; 2016 Jan; 8(3):1493-502. PubMed ID: 26676958 [TBL] [Abstract][Full Text] [Related]
39. Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids. Lu X; Zhao C Phys Chem Chem Phys; 2013 Dec; 15(46):20005-9. PubMed ID: 24169792 [TBL] [Abstract][Full Text] [Related]
40. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer. Velez-Fort E; Mathieu C; Pallecchi E; Pigneur M; Silly MG; Belkhou R; Marangolo M; Shukla A; Sirotti F; Ouerghi A ACS Nano; 2012 Dec; 6(12):10893-900. PubMed ID: 23148722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]