BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26617418)

  • 1. Have superfetation and matrotrophy facilitated the evolution of larger offspring in poeciliid fishes?
    Olivera-Tlahuel C; Ossip-Klein AG; Espinosa-Pérez HS; Zúñiga-Vega JJ
    Biol J Linn Soc Lond; 2015 Dec; 116(4):787-804. PubMed ID: 26617418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased superfetation precedes the evolution of advanced degrees of placentotrophy in viviparous fishes of the family Poeciliidae.
    García-Cabello KN; Fuentes-González JA; Saleh-Subaie N; Pienaar J; Zúñiga-Vega JJ
    Biol Lett; 2022 Oct; 18(10):20220173. PubMed ID: 36196554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent evolution of complex life history adaptations in two families of fishes, live-bearing halfbeaks (zenarchopteridae, beloniformes) and poeciliidae (cyprinodontiformes).
    Reznick D; Meredith R; Collette BB
    Evolution; 2007 Nov; 61(11):2570-83. PubMed ID: 17725625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in offspring size with birth order in placental fish: a role for asymmetric sibling competition?
    Schrader M; Travis J
    Evolution; 2012 Jan; 66(1):272-9. PubMed ID: 22220881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative life histories of fishes in the subgenus Limia (Pisces: Poeciliidae).
    Cohen SN; Regus JU; Reynoso Y; Mastro T; Reznick DN
    J Fish Biol; 2015 Jul; 87(1):100-14. PubMed ID: 26044076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superfetation in the viviparous fish Heterandria formosa (Poeciliidae).
    Guzmán-Bárcenas MG; Uribe MC
    J Morphol; 2019 May; 280(5):756-770. PubMed ID: 30950545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple paternity in superfetatious live-bearing fishes.
    Dekker ML; van Son LM; Leon-Kloosterziel KM; Hagmayer A; Furness AI; van Leeuwen JL; Pollux BJA
    J Evol Biol; 2022 Jul; 35(7):948-961. PubMed ID: 35612319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal size and body condition predict the amount of post-fertilization maternal provisioning in matrotrophic fish.
    Hagmayer A; Furness AI; Reznick DN; Pollux BJA
    Ecol Evol; 2018 Dec; 8(24):12386-12396. PubMed ID: 30619553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource allocation in offspring provisioning: an evaluation of the conditions favoring the evolution of matrotrophy.
    Trexler JC; DeAngelis DL
    Am Nat; 2003 Nov; 162(5):574-85. PubMed ID: 14618536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superfetation in live-bearing fishes is not always the result of a morphological constraint.
    Frías-Alvarez P; Zúñiga-Vega JJ
    Oecologia; 2016 Jul; 181(3):645-58. PubMed ID: 26508151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological structures for potential sperm storage in poeciliid fishes. Does superfetation matter?
    Olivera-Tlahuel C; Villagrán-Santa Cruz M; Moreno-Mendoza NA; Zúñiga-Vega JJ
    J Morphol; 2017 Jul; 278(7):907-918. PubMed ID: 28401572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of the placenta in poeciliid fishes.
    Furness AI; Avise JC; Pollux BJA; Reynoso Y; Reznick DN
    Curr Biol; 2021 May; 31(9):2004-2011.e5. PubMed ID: 33657405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative life histories of fishes in the genus Phallichthys (Pisces: Poeciliidae).
    Regus JU; Johnson JB; Webb SA; Reznick DN
    J Fish Biol; 2013 Jul; 83(1):144-55. PubMed ID: 23808697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viviparity in the halfbeak genera Dermogenys and Nomorhamphus (Teleostei: Hemiramphidae).
    Meisner AD; Burns JR
    J Morphol; 1997 Dec; 234(3):295-317. PubMed ID: 29852651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resource availability and its effects on mother to embryo nutrient transfer in two viviparous fish species.
    Molina-Moctezuma A; Hernández-Rosas AL; Zúñiga-Vega JJ
    J Exp Zool A Ecol Integr Physiol; 2020 Mar; 333(3):181-193. PubMed ID: 31904197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resources and offspring provisioning: a test of the Trexler-DeAngelis model for matrotrophy evolution.
    Marsh-Matthews E; Deaton R
    Ecology; 2006 Dec; 87(12):3014-20. PubMed ID: 17249226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish.
    Fleuren M; van Leeuwen JL; Pollux BJA
    Proc Biol Sci; 2019 Dec; 286(1916):20192245. PubMed ID: 31771468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of viviparity, matrotrophy, and other reproductive patterns in chondrichthyan fishes.
    Blackburn DG; Hughes DF
    Biol Rev Camb Philos Soc; 2024 Apr; ():. PubMed ID: 38562006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Egg Yolk Protein Homologs Identified in Live-Bearing Sharks: Co-Opted in the Lecithotrophy-to-Matrotrophy Shift?
    Ohishi Y; Arimura S; Shimoyama K; Yamada K; Yamauchi S; Horie T; Hyodo S; Kuraku S
    Genome Biol Evol; 2023 Mar; 15(3):. PubMed ID: 36808237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrotrophy and placentation in invertebrates: a new paradigm.
    Ostrovsky AN; Lidgard S; Gordon DP; Schwaha T; Genikhovich G; Ereskovsky AV
    Biol Rev Camb Philos Soc; 2016 Aug; 91(3):673-711. PubMed ID: 25925633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.