These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 26617630)
21. Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. Shivaraj SM; Mandlik R; Bhat JA; Raturi G; Elbaum R; Alexander L; Tripathi DK; Deshmukh R; Sonah H Plant Cell Physiol; 2022 Jan; 63(1):4-18. PubMed ID: 34558628 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Liang Y; Sun W; Zhu YG; Christie P Environ Pollut; 2007 May; 147(2):422-8. PubMed ID: 16996179 [TBL] [Abstract][Full Text] [Related]
23. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. Naidu S; Pandey J; Mishra LC; Chakraborty A; Roy A; Singh IK; Singh A Ecotoxicol Environ Saf; 2023 Apr; 255():114783. PubMed ID: 36963184 [TBL] [Abstract][Full Text] [Related]
24. Role of Silicon in Mediating Phosphorus Imbalance in Plants. Hu AY; Xu SN; Qin DN; Li W; Zhao XQ Plants (Basel); 2020 Dec; 10(1):. PubMed ID: 33383611 [TBL] [Abstract][Full Text] [Related]
25. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Mir RA; Bhat BA; Yousuf H; Islam ST; Raza A; Rizvi MA; Charagh S; Albaqami M; Sofi PA; Zargar SM Front Plant Sci; 2022; 13():819658. PubMed ID: 35401625 [TBL] [Abstract][Full Text] [Related]
26. Silicon as a Smart Fertilizer for Sustainability and Crop Improvement. Tayade R; Ghimire A; Khan W; Lay L; Attipoe JQ; Kim Y Biomolecules; 2022 Jul; 12(8):. PubMed ID: 35892337 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Adrees M; Ali S; Rizwan M; Zia-Ur-Rehman M; Ibrahim M; Abbas F; Farid M; Qayyum MF; Irshad MK Ecotoxicol Environ Saf; 2015 Sep; 119():186-97. PubMed ID: 26004359 [TBL] [Abstract][Full Text] [Related]
28. Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Rios JJ; Martínez-Ballesta MC; Ruiz JM; Blasco B; Carvajal M Front Plant Sci; 2017; 8():948. PubMed ID: 28642767 [TBL] [Abstract][Full Text] [Related]
29. The controversies of silicon's role in plant biology. Coskun D; Deshmukh R; Sonah H; Menzies JG; Reynolds O; Ma JF; Kronzucker HJ; Bélanger RR New Phytol; 2019 Jan; 221(1):67-85. PubMed ID: 30007071 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms of silicon-induced fungal disease resistance in plants. Ahammed GJ; Yang Y Plant Physiol Biochem; 2021 Aug; 165():200-206. PubMed ID: 34052681 [TBL] [Abstract][Full Text] [Related]
31. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon. Yu HY; Ding X; Li F; Wang X; Zhang S; Yi J; Liu C; Xu X; Wang Q Environ Pollut; 2016 Aug; 215():258-265. PubMed ID: 27209244 [TBL] [Abstract][Full Text] [Related]
32. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. Ahanger MA; Bhat JA; Siddiqui MH; Rinklebe J; Ahmad P J Exp Bot; 2020 Dec; 71(21):6758-6774. PubMed ID: 32585681 [TBL] [Abstract][Full Text] [Related]
33. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties. Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647 [TBL] [Abstract][Full Text] [Related]
34. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Kim YH; Khan AL; Waqas M; Lee IJ Front Plant Sci; 2017; 8():510. PubMed ID: 28428797 [TBL] [Abstract][Full Text] [Related]
35. Silicon and Plants: Current Knowledge and Technological Perspectives. Luyckx M; Hausman JF; Lutts S; Guerriero G Front Plant Sci; 2017; 8():411. PubMed ID: 28386269 [TBL] [Abstract][Full Text] [Related]
36. Dynamic Modeling of Silicon Bioavailability, Uptake, Transport, and Accumulation: Applicability in Improving the Nutritional Quality of Tomato. López-Pérez MC; Pérez-Labrada F; Ramírez-Pérez LJ; Juárez-Maldonado A; Morales-Díaz AB; González-Morales S; García-Dávila LR; García-Mata J; Benavides-Mendoza A Front Plant Sci; 2018; 9():647. PubMed ID: 29868098 [TBL] [Abstract][Full Text] [Related]
37. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. Hussain B; Riaz L; Li K; Hayat K; Akbar N; Hadeed MZ; Zhu B; Pu S Environ Pollut; 2023 Dec; 338():122689. PubMed ID: 37804901 [TBL] [Abstract][Full Text] [Related]
38. Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops. Acevedo FE; Peiffer M; Ray S; Tan CW; Felton GW Front Plant Sci; 2021; 12():631824. PubMed ID: 33679847 [TBL] [Abstract][Full Text] [Related]
39. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress. Manivannan A; Ahn YK Front Plant Sci; 2017; 8():1346. PubMed ID: 28824681 [TBL] [Abstract][Full Text] [Related]
40. Silicon-mediated plant defense against pathogens and insect pests. Islam W; Tayyab M; Khalil F; Hua Z; Huang Z; Chen HYH Pestic Biochem Physiol; 2020 Sep; 168():104641. PubMed ID: 32711774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]