BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26618310)

  • 1. Geostatistical modelling of the malaria risk in Mozambique: effect of the spatial resolution when using remotely-sensed imagery.
    Giardina F; Franke J; Vounatsou P
    Geospat Health; 2015 Nov; 10(2):333. PubMed ID: 26618310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially explicit Schistosoma infection risk in eastern Africa using Bayesian geostatistical modelling.
    Schur N; Hürlimann E; Stensgaard AS; Chimfwembe K; Mushinge G; Simoonga C; Kabatereine NB; Kristensen TK; Utzinger J; Vounatsou P
    Acta Trop; 2013 Nov; 128(2):365-77. PubMed ID: 22019933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data.
    Adigun AB; Gajere EN; Oresanya O; Vounatsou P
    Malar J; 2015 Apr; 14():156. PubMed ID: 25880096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving AfriPop dataset with settlement extents extracted from RapidEye for the border region comprising South-Africa, Swaziland and Mozambique.
    Deleu J; Franke J; Gebreslasie M; Linard C
    Geospat Health; 2015 Nov; 10(2):336. PubMed ID: 26618311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geo-spatial factors associated with infection risk among young children in rural Ghana: a secondary spatial analysis.
    Aimone AM; Brown PE; Zlotkin SH; Cole DC; Owusu-Agyei S
    Malar J; 2016 Jul; 15():349. PubMed ID: 27391972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique.
    Ferrao JL; Niquisse S; Mendes JM; Painho M
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29671756
    [No Abstract]   [Full Text] [Related]  

  • 8. MALAREO: a user-driven project.
    Gebreslasie MT; Bauwens I
    Geospat Health; 2015 Nov; 10(2):329. PubMed ID: 26618309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
    Franke J; Gebreslasie M; Bauwens I; Deleu J; Siegert F
    Geospat Health; 2015 Jun; 10(1):335. PubMed ID: 26054520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS).
    Riedel N; Vounatsou P; Miller JM; Gosoniu L; Chizema-Kawesha E; Mukonka V; Steketee RW
    Malar J; 2010 Feb; 9():37. PubMed ID: 20122148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis.
    Giardina F; Kasasa S; Sié A; Utzinger J; Tanner M; Vounatsou P
    Lancet Glob Health; 2014 Oct; 2(10):e601-15. PubMed ID: 25304636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data.
    Dlamini SN; Franke J; Vounatsou P
    Geospat Health; 2015 Jun; 10(1):302. PubMed ID: 26054511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating malaria burden in Nigeria: a geostatistical modelling approach.
    Onyiri N
    Geospat Health; 2015 Nov; 10(2):306. PubMed ID: 26618305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the environmental determinants of malaria and schistosomiasis in the Philippines using Remote Sensing and Geographic Information Systems.
    Leonardo LR; Rivera PT; Crisostomo BA; Sarol JN; Bantayan NC; Tiu WU; Bergquist NR
    Parassitologia; 2005 Mar; 47(1):105-14. PubMed ID: 16044679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of spatial technologies with applications for malaria transmission modelling and control in Africa.
    Gebreslasie MT
    Geospat Health; 2015 Nov; 10(2):328. PubMed ID: 26618308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.
    Ebhuoma O; Gebreslasie M
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27314369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial modelling and risk factors of malaria incidence in northern Malawi.
    Kazembe LN
    Acta Trop; 2007 May; 102(2):126-37. PubMed ID: 17543264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian spatial modelling of geostatistical data using INLA and SPDE methods: A case study predicting malaria risk in Mozambique.
    Moraga P; Dean C; Inoue J; Morawiecki P; Noureen SR; Wang F
    Spat Spatiotemporal Epidemiol; 2021 Nov; 39():100440. PubMed ID: 34774255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping malaria risk using geographic information systems and remote sensing: The case of Bahir Dar City, Ethiopia.
    Minale AS; Alemu K
    Geospat Health; 2018 May; 13(1):660. PubMed ID: 29772888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models.
    Scholte RG; Schur N; Bavia ME; Carvalho EM; Chammartin F; Utzinger J; Vounatsou P
    Geospat Health; 2013 Nov; 8(1):97-110. PubMed ID: 24258887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.