BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 26618374)

  • 1. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.
    Barone TL; Patts JR; Janisko SJ; Colinet JF; Patts LD; Beck TW; Mischler SE
    J Occup Environ Hyg; 2016; 13(4):284-92. PubMed ID: 26618374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.
    Patts JR; Barone TL
    J Occup Environ Hyg; 2017 May; 14(5):323-334. PubMed ID: 27792474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.
    Farcas D; Lee T; Chisholm WP; Soo JC; Harper M
    J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.
    Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR
    J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines.
    Birch ME; Noll JD
    J Environ Monit; 2004 Oct; 6(10):799-806. PubMed ID: 15480493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.
    Noll JD; Birch E
    J Environ Monit; 2004 Dec; 6(12):973-8. PubMed ID: 15568046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential pressure response of 25-mm-diameter glass fiber filters challenged with coal and limestone dust mixtures.
    Dobroski H; Tuchman DP; Vinson RP; Timko RJ
    Appl Occup Environ Hyg; 2002 Feb; 17(2):96-103. PubMed ID: 11843204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the spatial variability of personal sampler inlet locations.
    Vinson R; Volkwein J; McWilliams L
    J Occup Environ Hyg; 2007 Sep; 4(9):708-14. PubMed ID: 17654226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.
    Shahan MR; Seaman CE; Beck TW; Colinet JF; Mischler SE
    Min Eng; 2017 Sep; 69(9):61-66. PubMed ID: 28936001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermogravimetric analysis of respirable coal mine dust for simple source apportionment.
    Jaramillo L; Agioutanti E; Ghaychi Afrouz S; Keles C; Sarver E
    J Occup Environ Hyg; 2022 Sep; 19(9):568-579. PubMed ID: 35853145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing a revised inlet for the personal dust monitor.
    Mischler SE; Tuchman DP; Cauda EG; Colinet JF; Rubinstein EN
    J Occup Environ Hyg; 2019 Mar; 16(3):242-249. PubMed ID: 30620243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.
    Grové T; Van Dyk T; Franken A; Du Plessis J
    J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermogravimetric analysis application to determine coal, carbonate, and non-carbonate minerals mass fractions in respirable mine dust.
    Agioutanti E; Keles C; Sarver E
    J Occup Environ Hyg; 2020; 17(2-3):47-58. PubMed ID: 31868573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The derivation of estimated dust exposures for U.S. coal miners working before 1970.
    Attfield MD; Morring K
    Am Ind Hyg Assoc J; 1992 Apr; 53(4):248-55. PubMed ID: 1529917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartz in coal dust deposited on internal surface of respirable size selective samplers.
    Soo JC; Lee T; Kashon M; Kusti M; Harper M
    J Occup Environ Hyg; 2014; 11(12):D215-9. PubMed ID: 25204985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dust exposures at U.S. surface coal mines in 1982-1983.
    Amandus HE; Piacitelli G
    Arch Environ Health; 1987; 42(6):374-81. PubMed ID: 3439816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.
    Seaman CE; Shahan MR; Beck TW; Mischler SE
    J Occup Environ Hyg; 2018 Mar; 15(3):214-225. PubMed ID: 29200377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.