These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 26618389)

  • 1. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.
    Martin SW; Bischoff C; Schuller K
    J Phys Chem B; 2015 Dec; 119(51):15738-51. PubMed ID: 26618389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
    Bischoff C; Schuller K; Dunlap N; Martin SW
    J Phys Chem B; 2014 Feb; 118(7):1943-53. PubMed ID: 24447260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.
    Bischoff C; Schuller K; Martin SW
    J Phys Chem B; 2014 Apr; 118(13):3710-9. PubMed ID: 24605917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Dec; 117(51):16577-86. PubMed ID: 24295052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Feb; 117(7):2169-79. PubMed ID: 23281937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition Dependence of the Glass-Transition Temperature and Molar Volume in Sodium Thiosilicophosphate Glasses: A Structural Interpretation Using a Real Solution Model.
    Watson DE; Martin SW
    J Phys Chem B; 2018 Nov; 122(46):10637-10646. PubMed ID: 30375879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous ionic conductivity increase in Li2S + GeS2 + GeO2 glasses.
    Kim Y; Saienga J; Martin SW
    J Phys Chem B; 2006 Aug; 110(33):16318-25. PubMed ID: 16913758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive and Negative Mixed Glass Former Effects in Sodium Borosilicate and Borophosphate Glasses Studied by (23)Na NMR.
    Storek M; Adjei-Acheamfour M; Christensen R; Martin SW; Böhmer R
    J Phys Chem B; 2016 May; 120(19):4482-95. PubMed ID: 27092392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed barrier model for the mixed glass former effect in ion conducting glasses.
    Schuch M; Müller CR; Maass P; Martin SW
    Phys Rev Lett; 2009 Apr; 102(14):145902. PubMed ID: 19392455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and conductivity studies of the mixed glass former effect in lithium borophosphate glasses.
    Storek M; Böhmer R; Martin SW; Larink D; Eckert H
    J Chem Phys; 2012 Sep; 137(12):124507. PubMed ID: 23020343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic Conductivity of K-ion Glassy Solid Electrolytes of K
    Hona RK; Azure AD; Guinn M; Phuyal US; Stroh K; Thapa AK
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical conductivity and relaxation in mixed alkali tellurite glasses.
    Ghosh S; Ghosh A
    J Chem Phys; 2007 May; 126(18):184509. PubMed ID: 17508813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies.
    Bischoff C; Schuller K; Beckman SP; Martin SW
    Phys Rev Lett; 2012 Aug; 109(7):075901. PubMed ID: 23006384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and its Assessment.
    Lodesani F; Menziani MC; Hijiya H; Takato Y; Urata S; Pedone A
    Sci Rep; 2020 Feb; 10(1):2906. PubMed ID: 32076082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation size effects in mixed-ion metaphosphate glasses: structural characterization by multinuclear solid state NMR spectroscopy.
    Schneider J; Tsuchida J; Eckert H
    Phys Chem Chem Phys; 2013 Sep; 15(34):14328-39. PubMed ID: 23877101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model linking elastic properties and ionic conductivity of mixed network former glasses.
    Wang W; Christensen R; Curtis B; Martin SW; Kieffer J
    Phys Chem Chem Phys; 2018 Jan; 20(3):1629-1641. PubMed ID: 29261212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into Lithium Sulfide Glass Electrolyte Structures and Ionic Conductivity via Machine Learning Force Field Simulations.
    Zhou R; Luo K; Martin SW; An Q
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18874-18887. PubMed ID: 38568163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation diffusion and ionic conductivity in soda-lime silicate glasses.
    Natrup FV; Bracht H; Murugavel S; Roling B
    Phys Chem Chem Phys; 2005 Jun; 7(11):2279-86. PubMed ID: 19785112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Modeling of the Structure and Na
    Dive A; Benmore C; Wilding M; Martin SW; Beckman S; Banerjee S
    J Phys Chem B; 2018 Aug; 122(30):7597-7608. PubMed ID: 29924606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Characterization of the Short-Range Order in High Alkali Content Sodium Thiosilicophosphate Glasses.
    Watson DE; Martin SW
    Inorg Chem; 2018 Jan; 57(1):72-81. PubMed ID: 29257681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.