These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26618659)

  • 1. Mechanical properties derived from phase separation in co-polymer hydrogels.
    Nixon RM; Ten Hove JB; Orozco A; Jenkins ZM; Baenen PC; Wiatt MK; Zuluaga J; Sawyer WG; Angelini TE
    J Mech Behav Biomed Mater; 2015 Mar; 55():286-294. PubMed ID: 26618659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical properties of biomedical hydrogel for application as microchannel elastomer.
    Ige EO; Raj MK; Dare AA; Chakraborty S
    J Mech Behav Biomed Mater; 2018 Jan; 77():217-224. PubMed ID: 28946052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.
    Pollock JF; Healy KE
    Acta Biomater; 2010 Apr; 6(4):1307-18. PubMed ID: 19941981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion between highly stretchable materials.
    Tang J; Li J; Vlassak JJ; Suo Z
    Soft Matter; 2016 Jan; 12(4):1093-9. PubMed ID: 26573427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures.
    Yuk H; Zhang T; Parada GA; Liu X; Zhao X
    Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical Properties of Microstructured Elastomeric Hydrogels.
    Lau HK; Rattan S; Fu H; Garcia CG; Barber DM; Kiick KL; Crosby AJ
    Macromol Biosci; 2020 May; 20(5):e1900360. PubMed ID: 32237050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: improved swelling behavior and mechanical properties.
    Liu Z; Luo Y; Zhang K
    J Biomater Sci Polym Ed; 2008; 19(11):1503-20. PubMed ID: 18973726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links.
    Kean ZS; Hawk JL; Lin S; Zhao X; Sijbesma RP; Craig SL
    Adv Mater; 2014 Sep; 26(34):6013-8. PubMed ID: 25044398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties.
    Peng HT; Martineau L; Shek PN
    J Mater Sci Mater Med; 2007 Jun; 18(6):975-86. PubMed ID: 17243001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Heterogeneous Hydrogels with Dynamic Nanocrystal-Polymer Interface.
    Huang H; Wang Y; Wang X; Rehfeldt F; Zhang K
    Macromol Rapid Commun; 2017 Jun; 38(12):. PubMed ID: 28374927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property.
    Bao Z; Xian C; Yuan Q; Liu G; Wu J
    Adv Healthc Mater; 2019 Sep; 8(17):e1900670. PubMed ID: 31364824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-graft-polyaniline-based hydrogels: elaboration and properties.
    Marcasuzaa P; Reynaud S; Ehrenfeld F; Khoukh A; Desbrieres J
    Biomacromolecules; 2010 Jun; 11(6):1684-91. PubMed ID: 20481581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.
    Yang J; Gong C; Shi FK; Xie XM
    J Phys Chem B; 2012 Oct; 116(39):12038-47. PubMed ID: 22950674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable self-healing hydrogels realized via in situ polymerization.
    Vivek B; Prasad E
    J Phys Chem B; 2015 Apr; 119(14):4881-7. PubMed ID: 25774447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-oscillating gel composed of thermosensitive polymer exhibiting higher LCST.
    Hidaka M; Yoshida R
    J Control Release; 2011 Mar; 150(2):171-6. PubMed ID: 21130818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.