These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
708 related articles for article (PubMed ID: 26618718)
21. Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion. Chen Y; Wang S; Wang S; Liu C; Su C; Hageman M; Hussain M; Haskell R; Stefanski K; Qian F Mol Pharm; 2016 Aug; 13(8):2787-95. PubMed ID: 27337060 [TBL] [Abstract][Full Text] [Related]
22. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil. Wlodarski K; Sawicki W; Haber K; Knapik J; Wojnarowska Z; Paluch M; Lepek P; Hawelek L; Tajber L Eur J Pharm Biopharm; 2015 Aug; 94():106-15. PubMed ID: 25998701 [TBL] [Abstract][Full Text] [Related]
23. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic. Butreddy A Eur J Pharm Biopharm; 2022 Aug; 177():289-307. PubMed ID: 35872180 [TBL] [Abstract][Full Text] [Related]
24. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers. Wegiel LA; Mauer LJ; Edgar KJ; Taylor LS J Pharm Sci; 2013 Jan; 102(1):171-84. PubMed ID: 23132686 [TBL] [Abstract][Full Text] [Related]
25. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine. Sarode AL; Malekar SA; Cote C; Worthen DR Carbohydr Polym; 2014 Nov; 112():512-9. PubMed ID: 25129775 [TBL] [Abstract][Full Text] [Related]
26. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Zhao P; Hu G; Chen H; Li M; Wang Y; Sun N; Wang L; Xu Y; Xia J; Tian B; Liu Y; He Z; Fu Q Int J Pharm; 2022 Mar; 616():121538. PubMed ID: 35124119 [TBL] [Abstract][Full Text] [Related]
27. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Xie T; Gao W; Taylor LS Int J Pharm; 2017 Oct; 531(1):313-323. PubMed ID: 28844901 [TBL] [Abstract][Full Text] [Related]
28. Interaction of Polymers with Enzalutamide Nanodroplets-Impact on Droplet Properties and Induction Times. Wilson VR; Mugheirbi NA; Mosquera-Giraldo LI; Deac A; Moseson DE; Smith DT; Novo DC; Borca CH; Slipchenko LV; Edgar KJ; Taylor LS Mol Pharm; 2021 Mar; 18(3):836-849. PubMed ID: 33539105 [TBL] [Abstract][Full Text] [Related]
29. Preparation and characterization of dipyridamole solid dispersions for stabilization of supersaturation: effect of precipitation inhibitors type and molecular weight. Vora C; Patadia R; Mittal K; Mashru R Pharm Dev Technol; 2016 Nov; 21(7):847-855. PubMed ID: 26333427 [TBL] [Abstract][Full Text] [Related]
30. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Sun DD; Lee PI J Control Release; 2015 Aug; 211():85-93. PubMed ID: 26054795 [TBL] [Abstract][Full Text] [Related]
32. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Sarode AL; Wang P; Obara S; Worthen DR Eur J Pharm Biopharm; 2014 Apr; 86(3):351-60. PubMed ID: 24161655 [TBL] [Abstract][Full Text] [Related]
33. Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations. Alhalaweh A; Bergström CAS; Taylor LS J Control Release; 2016 May; 229():172-182. PubMed ID: 27006280 [TBL] [Abstract][Full Text] [Related]
34. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance. Chen H; Pui Y; Liu C; Chen Z; Su CC; Hageman M; Hussain M; Haskell R; Stefanski K; Foster K; Gudmundsson O; Qian F J Pharm Sci; 2018 Jan; 107(1):317-326. PubMed ID: 29107047 [TBL] [Abstract][Full Text] [Related]
35. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions. Sakai T; Hirai D; Kimura SI; Iwao Y; Itai S Int J Pharm; 2018 Apr; 540(1-2):171-177. PubMed ID: 29447848 [TBL] [Abstract][Full Text] [Related]
36. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions. Knopp MM; Chourak N; Khan F; Wendelboe J; Langguth P; Rades T; Holm R Eur J Pharm Biopharm; 2016 Aug; 105():106-14. PubMed ID: 27212472 [TBL] [Abstract][Full Text] [Related]
37. Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Wegiel LA; Mosquera-Giraldo LI; Mauer LJ; Edgar KJ; Taylor LS Pharm Res; 2015 Oct; 32(10):3324-37. PubMed ID: 25975588 [TBL] [Abstract][Full Text] [Related]
38. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms. Li J; Wang X; Li C; Fan N; Wang J; He Z; Sun J Mol Pharm; 2017 Aug; 14(8):2781-2792. PubMed ID: 28661679 [TBL] [Abstract][Full Text] [Related]
39. Tailoring supersaturation from amorphous solid dispersions. Li N; Taylor LS J Control Release; 2018 Jun; 279():114-125. PubMed ID: 29654798 [TBL] [Abstract][Full Text] [Related]
40. Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements. Hate SS; Reutzel-Edens SM; Taylor LS Mol Pharm; 2019 Jan; 16(1):448-461. PubMed ID: 30521350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]