These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 26619039)

  • 1. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunophenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter.
    Siiman O; Gordon K; Burshteyn A; Maples JA; Whitesell JK
    Cytometry; 2000 Dec; 41(4):298-307. PubMed ID: 11084615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.
    Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK
    Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter?
    Poncelet P; Robert S; Bouriche T; Bez J; Lacroix R; Dignat-George F
    Cytometry A; 2016 Feb; 89(2):148-58. PubMed ID: 25963580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance.
    Lee JH; Mahmoud MA; Sitterle V; Sitterle J; Meredith JC
    J Am Chem Soc; 2009 Apr; 131(14):5048-9. PubMed ID: 19317467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Massaro EJ; Sanders KM; Degn LL; Boyes WK
    Cytometry A; 2010 Jul; 77(7):677-85. PubMed ID: 20564539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():497-509. PubMed ID: 22791459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Silver and TiO
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():415-436. PubMed ID: 32152995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for enumeration of circulating microvesicles on a conventional flow cytometer: Counting beads and scatter parameters.
    Alkhatatbeh MJ; Enjeti AK; Baqar S; Ekinci EI; Liu D; Thorne RF; Lincz LF
    J Circ Biomark; 2018; 7():1849454418766966. PubMed ID: 29662552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins.
    Zhou C; Krueger AB; Barnard JG; Qi W; Carpenter JF
    J Pharm Sci; 2015 Aug; 104(8):2441-50. PubMed ID: 26017684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced flow cytometry-based bead immunoassays using metal nanostructures.
    Deng W; Drozdowicz-Tomsia K; Jin D; Goldys EM
    Anal Chem; 2009 Sep; 81(17):7248-55. PubMed ID: 19715357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.
    Jiménez E; Abderrafi K; Abargues R; Valdés JL; Martínez-Pastor JP
    Langmuir; 2010 May; 26(10):7458-63. PubMed ID: 20187628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach.
    Guidelli EJ; Baffa O
    Med Phys; 2014 Mar; 41(3):032101. PubMed ID: 24593736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry.
    Groot Kormelink T; Arkesteijn GJ; Nauwelaers FA; van den Engh G; Nolte-'t Hoen EN; Wauben MH
    Cytometry A; 2016 Feb; 89(2):135-47. PubMed ID: 25688721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical comparison of four silver nanoparticles coatings using microscopy, hyperspectral imaging and flow cytometry.
    Zucker RM; Ortenzio J; Degn LL; Lerner JM; Boyes WK
    PLoS One; 2019; 14(7):e0219078. PubMed ID: 31365549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry.
    Zhang W; Tian Y; Hu X; He S; Niu Q; Chen C; Zhu S; Yan X
    Anal Chem; 2018 Nov; 90(21):12768-12775. PubMed ID: 30277744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles.
    Han Y; Jiang J; Lee SS; Ying JY
    Langmuir; 2008 Jun; 24(11):5842-8. PubMed ID: 18465888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.
    El-Hussein A; Mfouo-Tynga I; Abdel-Harith M; Abrahamse H
    J Photochem Photobiol B; 2015 Dec; 153():67-75. PubMed ID: 26398813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica microspheres are superior to polystyrene for microvesicle analysis by flow cytometry.
    Parida BK; Garrastazu H; Aden JK; Cap AP; McFaul SJ
    Thromb Res; 2015 May; 135(5):1000-6. PubMed ID: 25726425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.