These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 26619050)

  • 21. Experimental flammability limits and associated theoretical flame temperatures as a tool for predicting the temperature dependence of these limits.
    Zlochower IA
    J Loss Prev Process Ind; 2012 May; 25(3):555-560. PubMed ID: 26692639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures.
    Shu G; Long B; Tian H; Wei H; Liang X
    J Hazard Mater; 2015 Aug; 294():137-44. PubMed ID: 25867586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the postmortem interval by means of ¹H MRS of decomposing brain tissue: influence of ambient temperature.
    Ith M; Scheurer E; Kreis R; Thali M; Dirnhofer R; Boesch C
    NMR Biomed; 2011 Aug; 24(7):791-8. PubMed ID: 21834003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures.
    Norman F; Van den Schoor F; Verplaetsen F
    J Hazard Mater; 2006 Sep; 137(2):666-71. PubMed ID: 16716499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen dilution effect on the flammability limits for hydrocarbons.
    Chen CC; Wang TC; Liaw HJ; Chen HC
    J Hazard Mater; 2009 Jul; 166(2-3):880-90. PubMed ID: 19144467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new group contribution-based model for estimation of lower flammability limit of pure compounds.
    Gharagheizi F
    J Hazard Mater; 2009 Oct; 170(2-3):595-604. PubMed ID: 19520496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.
    Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N
    J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The lower and upper critical temperatures in male Japanese.
    Sato M; Katsuura T; Yasukouchi A
    J Hum Ergol (Tokyo); 1979 Dec; 8(2):145-53. PubMed ID: 555475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.
    Zhao F; Rogers WJ; Mannan MS
    J Hazard Mater; 2010 Feb; 174(1-3):416-23. PubMed ID: 19819067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures.
    Pio G; Salzano E
    J Hazard Mater; 2019 Jan; 362():224-229. PubMed ID: 30240996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explosion characteristics of LPG-air mixtures in closed vessels.
    Razus D; Brinzea V; Mitu M; Oancea D
    J Hazard Mater; 2009 Jun; 165(1-3):1248-52. PubMed ID: 19056172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicted limits for evaporative cooling in heat stress relief of cattle in warm conditions.
    Berman A
    J Anim Sci; 2009 Oct; 87(10):3413-7. PubMed ID: 19574571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly accurate prediction of flammability limits of chemical compounds using novel integrated hybrid models.
    El-Harbawi M; Samir BB; El Blidi L; Ben Ghanem O
    PLoS One; 2019; 14(11):e0224807. PubMed ID: 31725738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flammability limits of isobutane and its mixtures with various gases.
    Kondo S; Takizawa K; Takahashi A; Tokuhashi K; Sekiya A
    J Hazard Mater; 2007 Sep; 148(3):640-7. PubMed ID: 17433539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flammability of gas mixtures. Part 1: fire potential.
    Schröder V; Molnarne M
    J Hazard Mater; 2005 May; 121(1-3):37-44. PubMed ID: 15885404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.
    Marotta E; Paradisi C; Scorrano G
    J Mass Spectrom; 2004 Jul; 39(7):791-801. PubMed ID: 15282758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental study of flammability limits of natural gas-air mixture.
    Liao SY; Cheng Q; Jiang DM; Gao J
    J Hazard Mater; 2005 Mar; 119(1-3):81-4. PubMed ID: 15752851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure.
    Gharagheizi F
    J Hazard Mater; 2009 Sep; 169(1-3):217-20. PubMed ID: 19386414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the Flammability Limits of Lithium-Ion Battery Vent Gas under Different Initial Conditions.
    Ma B; Liu J; Yu R
    ACS Omega; 2020 Nov; 5(43):28096-28107. PubMed ID: 33163792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotavirus activity and meteorological variations in an Asian subtropical city, Hong Kong, 1995-2009.
    Chan MC; Mok HY; Lee TC; Nelson EA; Leung TF; Tam WW; Chan PK
    J Med Virol; 2013 Nov; 85(11):2026-33. PubMed ID: 23852875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.