BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26619384)

  • 1. Chemical Burn-Induced Stromal Demarcation Line.
    Brosh K; Rozenman Y
    Cornea; 2016 Feb; 35(2):286-8. PubMed ID: 26619384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the corneal collagen cross-linking demarcation line profile using anterior segment optical coherence tomography.
    Kymionis GD; Grentzelos MA; Plaka AD; Stojanovic N; Tsoulnaras KI; Mikropoulos DG; Rallis KI; Kankariya VP
    Cornea; 2013 Jul; 32(7):907-10. PubMed ID: 23538626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular burn caused by soft brown soap.
    Maudgal PC
    Bull Soc Belge Ophtalmol; 1996; 263():81-4. PubMed ID: 9396192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Corneal alkali burn imaged by spectral domain optical coherence tomography (AC-OCT)].
    Troumani Y; Casalan B; Beral L; David T
    J Fr Ophtalmol; 2018 May; 41(5):485-486. PubMed ID: 29778282
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of the Central and Peripheral Corneal Stromal Demarcation Line Depth in Conventional Versus Accelerated Collagen Cross-Linking.
    Ng AL; Chan TC; Lai JS; Cheng AC
    Cornea; 2015 Nov; 34(11):1432-6. PubMed ID: 26382901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical injuries of the eye: current concepts in pathophysiology and therapy.
    Wagoner MD
    Surv Ophthalmol; 1997; 41(4):275-313. PubMed ID: 9104767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice.
    Gulias-Cañizo R; Lagunes-Guillén A; González-Robles A; Sánchez-Guzmán E; Castro-Muñozledo F
    Burns; 2019 Mar; 45(2):398-412. PubMed ID: 30600126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced cross-linking demarcation line depth at the peripheral cornea after corneal collagen cross-linking.
    Yam JC; Cheng AC
    J Refract Surg; 2013 Jan; 29(1):49-53. PubMed ID: 23311741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of corneal burns.
    Onofrey BE
    Optom Clin; 1995; 4(3):31-40. PubMed ID: 7767017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal stromal demarcation line determined with anterior segment optical coherence tomography following a very high intensity corneal collagen cross-linking protocol.
    Kymionis GD; Tsoulnaras KI; Liakopoulos DA; Grentzelos MA; Paraskevopoulos TA; Zacharioudaki ME; Zivkovic M; Kouroupaki AI; Tsilimbaris MK
    Cornea; 2015 Jun; 34(6):664-7. PubMed ID: 25811721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol.
    Kymionis GD; Tsoulnaras KI; Grentzelos MA; Liakopoulos DA; Tsakalis NG; Blazaki SV; Paraskevopoulos TA; Tsilimbaris MK
    Am J Ophthalmol; 2014 Oct; 158(4):671-675.e1. PubMed ID: 25034113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Corneo-conjunctival alkali burn--case report].
    Buliga S; Carstocea B
    Oftalmologia; 2005; 49(4):38-40. PubMed ID: 16524124
    [No Abstract]   [Full Text] [Related]  

  • 13. Treatment of corneal edema secondary to chemical burn by Descemet membrane endothelial keratoplasty (DMEK).
    Hung Le VN; Bachmann B; Avgitidou G; Cursiefen C
    Can J Ophthalmol; 2019 Feb; 54(1):e43-e47. PubMed ID: 30851799
    [No Abstract]   [Full Text] [Related]  

  • 14. Corneal cross-linking-induced stromal demarcation line.
    Seiler T; Hafezi F
    Cornea; 2006 Oct; 25(9):1057-9. PubMed ID: 17133053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking.
    Doors M; Tahzib NG; Eggink FA; Berendschot TT; Webers CA; Nuijts RM
    Am J Ophthalmol; 2009 Dec; 148(6):844-51.e2. PubMed ID: 19781685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of the corneal collagen cross-linking demarcation line using confocal microscopy and anterior segment optical coherence tomography in keratoconic patients.
    Kymionis GD; Grentzelos MA; Plaka AD; Tsoulnaras KI; Diakonis VF; Liakopoulos DA; Kankariya VP; Pallikaris AI
    Am J Ophthalmol; 2014 Jan; 157(1):110-115.e1. PubMed ID: 24200235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into corneal alkali burns using an organ culture model.
    Zhao B; Ma A; Martin FL; Fullwood NJ
    Cornea; 2009 Jun; 28(5):541-6. PubMed ID: 19421042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed.
    Ling S; Qi C; Li W; Xu J; Kuang W
    Clin Exp Ophthalmol; 2009 Dec; 37(9):874-83. PubMed ID: 20092597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.
    Malta JB; Renesto AC; Moscovici BK; Soong HK; Campos M
    Cornea; 2015 Feb; 34(2):199-203. PubMed ID: 25514703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali Burn of the Ocular Surface Associated With a Commonly Used Antifog Agent for Eyewear: Two Cases and a Review of Previous Reports.
    Welling JD; Pike EC; Mauger TF
    Cornea; 2016 Feb; 35(2):289-91. PubMed ID: 26655480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.