These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26620111)

  • 41. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field.
    Brunner S; Hurni S; Herren G; Kalinina O; von Burg S; Zeller SL; Schmid B; Winzeler M; Keller B
    Plant Biotechnol J; 2011 Oct; 9(8):897-910. PubMed ID: 21438988
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat.
    Petersen S; Lyerly JH; Worthington ML; Parks WR; Cowger C; Marshall DS; Brown-Guedira G; Murphy JP
    Theor Appl Genet; 2015 Feb; 128(2):303-12. PubMed ID: 25425170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inheritance and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene Derived from the Chinese Common Wheat Landrace "Yilongtuomai".
    Wu XL; Wang JW; Cheng YK; Ye XL; Li W; Pu ZE; Jiang QT; Wei YM; Deng M; Zheng YL; Chen GY
    J Hered; 2016 Sep; 107(5):463-70. PubMed ID: 27208148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insights of Lr28 mediated wheat leaf rust resistance: Transcriptomic approach.
    Singh D; Kumar D; Satapathy L; Pathak J; Chandra S; Riaz A; Bhaganagre G; Dhariwal R; Kumar M; Prabhu KV; Balyan HS; Gupta PK; Mukhopadhyay K
    Gene; 2017 Dec; 637():72-89. PubMed ID: 28935260
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat.
    Krattinger SG; Lagudah ES; Spielmeyer W; Singh RP; Huerta-Espino J; McFadden H; Bossolini E; Selter LL; Keller B
    Science; 2009 Mar; 323(5919):1360-3. PubMed ID: 19229000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monosomic and molecular mapping of adult plant leaf rust resistance genes in the Brazilian wheat cultivar Toropi.
    Da-Silva PR; Brammer SP; Guerra D; Milach SC; Barcellos AL; Baggio MI
    Genet Mol Res; 2012 Aug; 11(3):2823-34. PubMed ID: 23007977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control.
    Torriani SF; Melichar JP; Mills C; Pain N; Sierotzki H; Courbot M
    Fungal Genet Biol; 2015 Jun; 79():8-12. PubMed ID: 26092783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum.
    Kaur J; Shah D; Fellers J
    Methods Mol Biol; 2017; 1679():269-276. PubMed ID: 28913807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wheat-the cereal abandoned by GM.
    Wulff BBH; Dhugga KS
    Science; 2018 Aug; 361(6401):451-452. PubMed ID: 30072526
    [No Abstract]   [Full Text] [Related]  

  • 50. Marker-assisted selection for disease resistance in wheat and barley breeding.
    Miedaner T; Korzun V
    Phytopathology; 2012 Jun; 102(6):560-6. PubMed ID: 22568813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.).
    Naruoka Y; Garland-Campbell KA; Carter AH
    Theor Appl Genet; 2015 Jun; 128(6):1083-101. PubMed ID: 25754424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current understanding of atypical resistance against fungal pathogens in wheat.
    Sinha A; Singh L; Rawat N
    Curr Opin Plant Biol; 2022 Aug; 68():102247. PubMed ID: 35716636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sugar flux and signaling in plant-microbe interactions.
    Bezrutczyk M; Yang J; Eom JS; Prior M; Sosso D; Hartwig T; Szurek B; Oliva R; Vera-Cruz C; White FF; Yang B; Frommer WB
    Plant J; 2018 Feb; 93(4):675-685. PubMed ID: 29160592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors.
    McDonald MC; Solomon PS
    Curr Opin Microbiol; 2018 Dec; 46():14-18. PubMed ID: 29452845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains.
    Crété R; Pires RN; Barbetti MJ; Renton M
    Sci Rep; 2020 Nov; 10(1):19752. PubMed ID: 33184393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SWEET Genes for Disease Resistance in Plants.
    Gupta PK
    Trends Genet; 2020 Dec; 36(12):901-904. PubMed ID: 32896434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. When resistance gene pyramids are not durable-the role of pathogen diversity.
    Stam R; McDonald BA
    Mol Plant Pathol; 2018 Mar; 19(3):521-524. PubMed ID: 29446883
    [No Abstract]   [Full Text] [Related]  

  • 58. Resistance Genes Affect How Pathogens Maintain Plant Abundance and Diversity.
    Stump SM; Marden JH; Beckman NG; Mangan SA; Comita LS
    Am Nat; 2020 Oct; 196(4):472-486. PubMed ID: 32970465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new player contributing to durable Fusarium resistance.
    Lagudah ES; Krattinger SG
    Nat Genet; 2019 Jul; 51(7):1070-1071. PubMed ID: 31253973
    [No Abstract]   [Full Text] [Related]  

  • 60. The American chestnut's genetic rebirth.
    Powell W
    Sci Am; 2014 Mar; 310(3):68-73. PubMed ID: 24660331
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.