These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26620127)

  • 1. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5).
    Huard K; Brown J; Jones JC; Cabral S; Futatsugi K; Gorgoglione M; Lanba A; Vera NB; Zhu Y; Yan Q; Zhou Y; Vernochet C; Riccardi K; Wolford A; Pirman D; Niosi M; Aspnes G; Herr M; Genung NE; Magee TV; Uccello DP; Loria P; Di L; Gosset JR; Hepworth D; Rolph T; Pfefferkorn JA; Erion DM
    Sci Rep; 2015 Dec; 5():17391. PubMed ID: 26620127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of a species-specific inhibitor selective for human Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY).
    Higuchi K; Kopel JJ; Sivaprakasam S; Jaramillo-Martinez V; Sutton RB; Urbatsch IL; Ganapathy V
    Biochem J; 2020 Nov; 477(21):4149-4165. PubMed ID: 33079129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and inhibition mechanism of the human citrate transporter NaCT.
    Sauer DB; Song J; Wang B; Hilton JK; Karpowich NK; Mindell JA; Rice WJ; Wang DN
    Nature; 2021 Mar; 591(7848):157-161. PubMed ID: 33597751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood-brain barrier.
    Kopel JJ; Bhutia YD; Sivaprakasam S; Ganapathy V
    Biochem J; 2021 Feb; 478(3):463-486. PubMed ID: 33544126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates.
    Inoue K; Fei YJ; Zhuang L; Gopal E; Miyauchi S; Ganapathy V
    Biochem J; 2004 Mar; 378(Pt 3):949-57. PubMed ID: 14656221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma Membrane Na⁺-Coupled Citrate Transporter (SLC13A5) and Neonatal Epileptic Encephalopathy.
    Bhutia YD; Kopel JJ; Lawrence JJ; Neugebauer V; Ganapathy V
    Molecules; 2017 Feb; 22(3):. PubMed ID: 28264506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors.
    Pajor AM; de Oliveira CA; Song K; Huard K; Shanmugasundaram V; Erion DM
    Mol Pharmacol; 2016 Dec; 90(6):755-765. PubMed ID: 27683012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-Dependent Allosteric Inhibition of the Human SLC13A5 Citrate Transporter by Hydroxysuccinic Acids, PF-06649298 and PF-06761281.
    Rives ML; Shaw M; Zhu B; Hinke SA; Wickenden AD
    Mol Pharmacol; 2016 Dec; 90(6):766-774. PubMed ID: 27754898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function.
    Inoue K; Zhuang L; Ganapathy V
    Biochem Biophys Res Commun; 2002 Dec; 299(3):465-71. PubMed ID: 12445824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia.
    Hardies K; de Kovel CG; Weckhuysen S; Asselbergh B; Geuens T; Deconinck T; Azmi A; May P; Brilstra E; Becker F; Barisic N; Craiu D; Braun KP; Lal D; Thiele H; Schubert J; Weber Y; van 't Slot R; Nürnberg P; Balling R; Timmerman V; Lerche H; Maudsley S; Helbig I; Suls A; Koeleman BP; De Jonghe P;
    Brain; 2015 Nov; 138(Pt 11):3238-50. PubMed ID: 26384929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence.
    Zwart R; Peeva PM; Rong JX; Sher E
    J Pharmacol Exp Ther; 2015 Nov; 355(2):247-54. PubMed ID: 26324167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hepatic Plasma Membrane Citrate Transporter NaCT (SLC13A5) as a Molecular Target for Metformin.
    Kopel J; Higuchi K; Ristic B; Sato T; Ramachandran S; Ganapathy V
    Sci Rep; 2020 May; 10(1):8536. PubMed ID: 32444674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus.
    Henke C; Töllner K; van Dijk RM; Miljanovic N; Cordes T; Twele F; Bröer S; Ziesak V; Rohde M; Hauck SM; Vogel C; Welzel L; Schumann T; Willmes DM; Kurzbach A; El-Agroudy NN; Bornstein SR; Schneider SA; Jordan J; Potschka H; Metallo CM; Köhling R; Birkenfeld AL; Löscher W
    Neurobiol Dis; 2020 Sep; 143():105018. PubMed ID: 32682952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders.
    Akhtar MJ; Khan SA; Kumar B; Chawla P; Bhatia R; Singh K
    Mol Cell Biochem; 2023 Aug; 478(8):1669-1687. PubMed ID: 36495372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target.
    Li Z; Erion DM; Maurer TS
    CPT Pharmacometrics Syst Pharmacol; 2016 Mar; 5(3):132-9. PubMed ID: 27069776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family.
    Huard K; Gosset JR; Montgomery JI; Gilbert A; Hayward MM; Magee TV; Cabral S; Uccello DP; Bahnck K; Brown J; Purkal J; Gorgoglione M; Lanba A; Futatsugi K; Herr M; Genung NE; Aspnes G; Polivkova J; Garcia-Irizarry CN; Li Q; Canterbury D; Niosi M; Vera NB; Li Z; Khunte B; Siderewicz J; Rolph T; Erion DM
    J Med Chem; 2016 Feb; 59(3):1165-75. PubMed ID: 26734723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism.
    Selch S; Chafai A; Sticht H; Birkenfeld AL; Fromm MF; König J
    Sci Rep; 2018 Jul; 8(1):11330. PubMed ID: 30054523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice.
    Irizarry AR; Yan G; Zeng Q; Lucchesi J; Hamang MJ; Ma YL; Rong JX
    PLoS One; 2017; 12(4):e0175465. PubMed ID: 28406943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action.
    Inoue K; Zhuang L; Maddox DM; Smith SB; Ganapathy V
    Biochem J; 2003 Aug; 374(Pt 1):21-6. PubMed ID: 12826022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.