These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26620162)

  • 1. Toward Large Scale Parallelization for Molecular Dynamics of Small Chemical Systems: A Combined Parallel Tempering and Domain Decomposition Approach.
    Slim HA; Wilson MR
    J Chem Theory Comput; 2008 Oct; 4(10):1570-5. PubMed ID: 26620162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel replica dynamics with a heterogeneous distribution of barriers: application to n-hexadecane pyrolysis.
    Kum O; Dickson BM; Stuart SJ; Uberuaga BP; Voter AF
    J Chem Phys; 2004 Nov; 121(20):9808-19. PubMed ID: 15549854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2014 May; 35(14):1064-72. PubMed ID: 24659253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigraining: an algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems.
    Christen M; van Gunsteren WF
    J Chem Phys; 2006 Apr; 124(15):154106. PubMed ID: 16674217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Coarse-Grained Protein-Protein Interactions with Graphics Processing Units.
    Tunbridge I; Best RB; Gain J; Kuttel MM
    J Chem Theory Comput; 2010 Nov; 6(11):3588-600. PubMed ID: 26617104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart resolution replica exchange: an efficient algorithm for exploring complex energy landscapes.
    Liu P; Voth GA
    J Chem Phys; 2007 Jan; 126(4):045106. PubMed ID: 17286516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid particle-field molecular dynamics approach: a route toward efficient coarse-grained models for biomembranes.
    Milano G; Kawakatsu T; De Nicola A
    Phys Biol; 2013 Aug; 10(4):045007. PubMed ID: 23912010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.
    Yamamori Y; Kitao A
    J Chem Phys; 2013 Oct; 139(14):145105. PubMed ID: 24116651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient parallelization of short-range molecular dynamics simulations on many-core systems.
    Meyer R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053309. PubMed ID: 24329381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions.
    Markutsya S; Lamm MH
    J Chem Phys; 2014 Nov; 141(17):174107. PubMed ID: 25381502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid particle-field molecular dynamics simulations: parallelization and benchmarks.
    Zhao Y; De Nicola A; Kawakatsu T; Milano G
    J Comput Chem; 2012 Mar; 33(8):868-80. PubMed ID: 22278759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between integrated and parallel tempering methods in enhanced sampling simulations.
    Yang L; Shao Q; Gao YQ
    J Chem Phys; 2009 Mar; 130(12):124111. PubMed ID: 19334812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Particle-Field Coarse-Grained Models for Biological Phospholipids.
    De Nicola A; Zhao Y; Kawakatsu T; Roccatano D; Milano G
    J Chem Theory Comput; 2011 Sep; 7(9):2947-62. PubMed ID: 26605484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replica-exchange extensions of simulated tempering method.
    Mitsutake A; Okamoto Y
    J Chem Phys; 2004 Aug; 121(6):2491-504. PubMed ID: 15281846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated-tempering replica-exchange method for the multidimensional version.
    Mitsutake A
    J Chem Phys; 2009 Sep; 131(9):094105. PubMed ID: 19739847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained simulations of RNA and DNA duplexes.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Chem B; 2013 Jul; 117(27):8047-60. PubMed ID: 23730911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choosing weights for simulated tempering.
    Park S; Pande VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016703. PubMed ID: 17677590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.