These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26620172)

  • 1. Mechanism for the Substitution of an Aqua Ligand of UO2(OH2)5(2+) by Chloride.
    Rotzinger FP
    J Chem Theory Comput; 2008 Oct; 4(10):1654-8. PubMed ID: 26620172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of the precursor/successor complex and transition state of the CrCl²⁺/Cr²⁺ electron self-exchange reaction via the inner-sphere pathway.
    Rotzinger FP
    Inorg Chem; 2014 Sep; 53(18):9923-31. PubMed ID: 25162781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Properties of Precursor/Successor Complex and Transition State of the FeCl(2+)/Fe(2+) Electron Self-Exchange Reaction via the Inner-Sphere Pathway.
    Rotzinger FP
    Inorg Chem; 2015 Nov; 54(21):10450-6. PubMed ID: 26479082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study of the fluoride exchange between UO2F+(aq) and UO2 2+(aq).
    Macak P; Tsushima S; Wahlgren U; Grenthe I
    Dalton Trans; 2006 Aug; (30):3638-46. PubMed ID: 16865175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The water-exchange mechanism of the [UO(2)(OH(2))(5)](2+) ion revisited: the importance of a proper treatment of electron correlation.
    Rotzinger FP
    Chemistry; 2007; 13(3):800-11. PubMed ID: 17048294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Chemical Study of the Water Exchange Mechanism of the Neptunyl(VI) and -(V) Aqua Ions.
    Rotzinger FP
    Inorg Chem; 2018 Mar; 57(5):2425-2431. PubMed ID: 29431430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can octahedral t2g6 complexes substitute associatively? The case of the isoelectronic ruthenium(II) and rhodium(III) hexaaquaions.
    De Vito D; Sidorenkova H; Rotzinger FP; Weber J; Merbach AE
    Inorg Chem; 2000 Nov; 39(24):5547-52. PubMed ID: 11154570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration and speciation studies of Mn2+ in aqueous solution with simple monovalent anions (ClO4-, NO3-, Cl-, Br-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Oct; 42(40):14460-72. PubMed ID: 23969599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates and mechanisms of water exchange of UO2(2+)(aq) and UO2(oxalate)F(H2O)2-: a variable-temperature 17O and 19F NMR study.
    Farkas I; Bányai I; Szabó Z; Wahlgren U; Grenthe I
    Inorg Chem; 2000 Feb; 39(4):799-805. PubMed ID: 11272579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydration on coordination properties of uranyl(VI) complexes. A first-principles molecular dynamics study.
    Bühl M; Kabrede H; Diss R; Wipff G
    J Am Chem Soc; 2006 May; 128(19):6357-68. PubMed ID: 16683800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggering water exchange mechanisms via chelate architecture. Shielding of transition metal centers by aminopolycarboxylate spectator ligands.
    Maigut J; Meier R; Zahl A; van Eldik R
    J Am Chem Soc; 2008 Nov; 130(44):14556-69. PubMed ID: 18839954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Chemical Study of the Redox Potential of the Co(OH
    Rotzinger FP; Li H
    Inorg Chem; 2018 Aug; 57(16):10122-10127. PubMed ID: 30070480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of water exchange in aqueous uranyl(VI) ion. A density functional molecular dynamics study.
    Bühl M; Kabrede H
    Inorg Chem; 2006 May; 45(10):3834-6. PubMed ID: 16676935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the reaction mechanism on nitrile hydration catalyzed by [Pd(OH2)4]2+: insights from theory.
    Tílvez E; Menéndez MI; López R
    Inorg Chem; 2013 Jul; 52(13):7541-9. PubMed ID: 23758118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Chemical Study of the Water Exchange Mechanism of the Americyl(VI) Aqua Ion.
    Fabrizio A; Rotzinger FP
    Inorg Chem; 2016 Nov; 55(21):11147-11152. PubMed ID: 27739669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical equilibria in the UO2(2+)-H2O2-F-/OH- systems and possible solution precursors for the formation of [Na6(OH2)8]@[UO2(O2)F]24(18-) and [Na6(OH2)8]@[UO2(O2)OH]24(18-) clusters.
    Zanonato PL; Di Bernardo P; Fischer A; Grenthe I
    Dalton Trans; 2013 Jul; 42(28):10129-37. PubMed ID: 23719627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling.
    Xie HB; Zhou Y; Zhang Y; Johnson JK
    J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water exchange from the oxo-centered rhodium(III) trimer [Rh3(mu3-O)(mu-O2CCH3)6(OH2)3]+: a high-pressure 17O NMR study.
    Houston JR; Yu P; Casey WH
    Inorg Chem; 2005 Jul; 44(14):5176-82. PubMed ID: 15998047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent tuning of the substitution behavior of a seven-coordinate iron(III) complex.
    Ivanović-Burmazović I; Hamza MS; van Eldik R
    Inorg Chem; 2006 Feb; 45(4):1575-84. PubMed ID: 16471968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.