These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26620182)

  • 1. Molecular Polarization Effects on the Relative Energies of the Real and Putative Crystal Structures of Valine.
    Cooper TG; Hejczyk KE; Jones W; Day GM
    J Chem Theory Comput; 2008 Oct; 4(10):1795-805. PubMed ID: 26620182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.
    Price SL; Leslie M; Welch GW; Habgood M; Price LS; Karamertzanis PG; Day GM
    Phys Chem Chem Phys; 2010 Aug; 12(30):8478-90. PubMed ID: 20607186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight-binding as an intermediate optimisation method and for free energy estimation.
    Iuzzolino L; McCabe P; Price SL; Brandenburg JG
    Faraday Discuss; 2018 Oct; 211(0):275-296. PubMed ID: 30035288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the equilibrium composition of mechanochemical reactions predictable using computational chemistry?
    Bygrave PJ; Case DH; Day GM
    Faraday Discuss; 2014; 170():41-57. PubMed ID: 25408946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs.
    Karamertzanis PG; Day GM; Welch GW; Kendrick J; Leusen FJ; Neumann MA; Price SL
    J Chem Phys; 2008 Jun; 128(24):244708. PubMed ID: 18601366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailor-made force fields for crystal-structure prediction.
    Neumann MA
    J Phys Chem B; 2008 Aug; 112(32):9810-29. PubMed ID: 18642947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital.
    Day GM; S Motherwell WD; Jones W
    Phys Chem Chem Phys; 2007 Apr; 9(14):1693-704. PubMed ID: 17396181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction.
    Karamertzanis PG; Kazantsev AV; Issa N; Welch GW; Adjiman CS; Pantelides CC; Price SL
    J Chem Theory Comput; 2009 May; 5(5):1432-48. PubMed ID: 26609729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals.
    Day GM; Price SL
    J Am Chem Soc; 2003 Dec; 125(52):16434-43. PubMed ID: 14692787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing a Variety of Electronic-Structure-Based Methods for the Relative Energies of 5-Formyluracil Crystals.
    Habgood M; Price SL; Portalone G; Irrera S
    J Chem Theory Comput; 2011 Sep; 7(9):2685-8. PubMed ID: 26605460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of molecular crystal structures by a crystallographic QM/MM model with full space-group symmetry.
    Mörschel P; Schmidt MU
    Acta Crystallogr A Found Adv; 2015 Jan; 71(Pt 1):26-35. PubMed ID: 25537386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the Induction Energy Important for Modeling Organic Crystals?
    Welch GW; Karamertzanis PG; Misquitta AJ; Stone AJ; Price SL
    J Chem Theory Comput; 2008 Mar; 4(3):522-32. PubMed ID: 26620792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lines-of-force landscape of interactions between molecules in crystals; cohesive versus tolerant and 'collateral damage' contact.
    Gavezzotti A
    Acta Crystallogr B; 2010 Jun; 66(Pt 3):396-406. PubMed ID: 20484811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods.
    Nguyen D; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):630-651. PubMed ID: 33125348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis.
    Gilson MK; Honig B
    Proteins; 1988; 4(1):7-18. PubMed ID: 3186692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the interplay between CH...O and OH...O interactions in determining crystal packing and molecular conformation: an experimental and theoretical charge density study of the fungal secondary metabolite austdiol (C12H12O5).
    Lo Presti L; Soave R; Destro R
    J Phys Chem B; 2006 Mar; 110(12):6405-14. PubMed ID: 16553460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of zwitterionic L- and DL-alanine crystals from their experimental and theoretical charge densities.
    Destro R; Soave R; Barzaghi M
    J Phys Chem B; 2008 Apr; 112(16):5163-74. PubMed ID: 18373373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational polymorphism in organic crystals.
    Nangia A
    Acc Chem Res; 2008 May; 41(5):595-604. PubMed ID: 18348538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Anisotropic Potentials in Modeling Water and Free Energies of Hydration.
    Karamertzanis PG; Raiteri P; Galindo A
    J Chem Theory Comput; 2010 May; 6(5):1590-607. PubMed ID: 26615693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.