These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26620475)

  • 21. Bonding analysis using localized relativistic orbitals: water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po).
    Dubillard S; Rota JB; Saue T; Faegri K
    J Chem Phys; 2006 Apr; 124(15):154307. PubMed ID: 16674226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New procedure to evaluate aromaticity at the density functional theory, Hartree-Fock, and post-self-consistent field levels.
    Bao P; Yu ZH
    J Comput Chem; 2011 Jan; 32(2):248-59. PubMed ID: 20645301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of molecular orbitals on fragments.
    Sax AF
    J Comput Chem; 2012 Jun; 33(17):1495-510. PubMed ID: 22522607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme.
    Seifert G
    J Phys Chem A; 2007 Jul; 111(26):5609-13. PubMed ID: 17439198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximal orbital analysis of molecular wavefunctions.
    Dupuis M; Nallapu M
    J Comput Chem; 2019 Jan; 40(1):39-50. PubMed ID: 30226924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals.
    Horn PR; Mao Y; Head-Gordon M
    Phys Chem Chem Phys; 2016 Aug; 18(33):23067-79. PubMed ID: 27492057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.
    Azar RJ; Head-Gordon M
    J Chem Phys; 2012 Jan; 136(2):024103. PubMed ID: 22260560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.
    Phipps MJ; Fox T; Tautermann CS; Skylaris CK
    J Chem Theory Comput; 2016 Jul; 12(7):3135-48. PubMed ID: 27248370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.
    Horn PR; Mao Y; Head-Gordon M
    J Chem Phys; 2016 Mar; 144(11):114107. PubMed ID: 27004862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Configuration Interaction Picture for a Molecular Environment Using Localized Molecular Orbitals: The Excited States of Retinal Proteins.
    Hasegawa JY; Fujimoto KJ; Kawatsu T
    J Chem Theory Comput; 2012 Nov; 8(11):4452-61. PubMed ID: 26605605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.
    Azar RJ; Horn PR; Sundstrom EJ; Head-Gordon M
    J Chem Phys; 2013 Feb; 138(8):084102. PubMed ID: 23464135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential.
    Piquemal JP; Chevreau H; Gresh N
    J Chem Theory Comput; 2007 May; 3(3):824-37. PubMed ID: 26627402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized Hartree product treatment of multiple protons in the nuclear-electronic orbital framework.
    Auer B; Hammes-Schiffer S
    J Chem Phys; 2010 Feb; 132(8):084110. PubMed ID: 20192293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.
    Cobar EA; Horn PR; Bergman RG; Head-Gordon M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15328-39. PubMed ID: 23052011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compressed Representation of Kohn-Sham Orbitals via Selected Columns of the Density Matrix.
    Damle A; Lin L; Ying L
    J Chem Theory Comput; 2015 Apr; 11(4):1463-9. PubMed ID: 26574357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Berry phase approach to longitudinal dipole moments of infinite chains in electronic-structure methods with local basis sets.
    Kudin KN; Car R; Resta R
    J Chem Phys; 2007 Jun; 126(23):234101. PubMed ID: 17600398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A CSOV study of the difference between HF and DFT intermolecular interaction energy values: the importance of the charge transfer contribution.
    Piquemal JP; Marquez A; Parisel O; Giessner-Prettre C
    J Comput Chem; 2005 Jul; 26(10):1052-62. PubMed ID: 15898112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a force field based on density fitting.
    Piquemal JP; Cisneros GA; Reinhardt P; Gresh N; Darden TA
    J Chem Phys; 2006 Mar; 124(10):104101. PubMed ID: 16542062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.