These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26620495)

  • 1. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.
    Bechard AR; Cacodcar N; King MA; Lewis MH
    Behav Brain Res; 2016 Feb; 299():122-31. PubMed ID: 26620495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of repetitive motor behaviors in deer mice: Effects of environmental enrichment, repeated testing, and differential mediation by indirect basal ganglia pathway activation.
    Bechard AR; Bliznyuk N; Lewis MH
    Dev Psychobiol; 2017 Apr; 59(3):390-399. PubMed ID: 28181216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological targeting of striatal indirect pathway neurons improves subthalamic nucleus dysfunction and reduces repetitive behaviors in C58 mice.
    Muehlmann AM; Maletz S; King MA; Lewis MH
    Behav Brain Res; 2020 Aug; 391():112708. PubMed ID: 32461129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of repetitive behavior in a mouse model: roles of indirect and striosomal basal ganglia pathways.
    Tanimura Y; King MA; Williams DK; Lewis MH
    Int J Dev Neurosci; 2011 Jun; 29(4):461-7. PubMed ID: 21329752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subthalamic nucleus pathology contributes to repetitive behavior expression and is reversed by environmental enrichment.
    Lewis MH; Lindenmaier Z; Boswell K; Edington G; King MA; Muehlmann AM
    Genes Brain Behav; 2018 Nov; 17(8):e12468. PubMed ID: 29457676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists.
    Tanimura Y; Vaziri S; Lewis MH
    Behav Brain Res; 2010 Jun; 210(1):116-22. PubMed ID: 20178817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour.
    Tanimura Y; Yang MC; Lewis MH
    Behav Brain Res; 2008 Jun; 189(2):250-6. PubMed ID: 18272239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal models of restricted repetitive behavior in autism.
    Lewis MH; Tanimura Y; Lee LW; Bodfish JW
    Behav Brain Res; 2007 Jan; 176(1):66-74. PubMed ID: 16997392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental enrichment: effects on stereotyped behavior and dendritic morphology.
    Turner CA; Lewis MH; King MA
    Dev Psychobiol; 2003 Jul; 43(1):20-7. PubMed ID: 12794775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenerational effects of environmental enrichment on repetitive motor behavior development.
    Bechard AR; Lewis MH
    Behav Brain Res; 2016 Jul; 307():145-9. PubMed ID: 27059336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental interventions reduced repetitive behavior in a mouse model.
    Bechard AR; McElderry S
    Physiol Behav; 2024 Jan; 273():114386. PubMed ID: 37884109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice.
    Lewis MH; Rajpal H; Muehlmann AM
    Pharmacol Biochem Behav; 2019 Jun; 181():110-116. PubMed ID: 31054946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential consequences of habitual responding in a mouse model of repetitive behavior.
    Curry-Pochy LS; Kravetz Z; Feinstein J; Yaffe B; Tanios V; Makar J; Lewis MH
    Behav Neurosci; 2020 Feb; 134(1):21-33. PubMed ID: 31724406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Dopamine D
    Lewis MH; Primiani CT; Muehlmann AM
    J Pharmacol Exp Ther; 2019 Apr; 369(1):88-97. PubMed ID: 30745415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia.
    Gillies A; Willshaw D; Li Z
    Proc Biol Sci; 2002 Mar; 269(1491):545-51. PubMed ID: 11916469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.
    Devergnas A; Piallat B; Prabhu S; Torres N; Louis Benabid A; David O; Chabardès S
    Brain; 2012 Jul; 135(Pt 7):2263-76. PubMed ID: 22710196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental enrichment: effects on stereotyped behavior and regional neuronal metabolic activity.
    Turner CA; Yang MC; Lewis MH
    Brain Res; 2002 May; 938(1-2):15-21. PubMed ID: 12031530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spontaneous stereotyped behavior in deer mice: effects of early and late exposure to a more complex environment.
    Powell SB; Newman HA; McDonald TA; Bugenhagen P; Lewis MH
    Dev Psychobiol; 2000 Sep; 37(2):100-8. PubMed ID: 10954835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease.
    Meissner W; Guigoni C; Cirilli L; Garret M; Bioulac BH; Gross CE; Bezard E; Benazzouz A
    Eur J Neurosci; 2007 Mar; 25(5):1492-500. PubMed ID: 17425575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental complexity and central nervous system development and function.
    Lewis MH
    Ment Retard Dev Disabil Res Rev; 2004; 10(2):91-5. PubMed ID: 15362162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.